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The partitioning of solute from α plates formed in Ti-5.1at.%Fe, Ti-5.4at.%V and Ti-2.6at.%Fe alloys has been 
investigated theoretically. These plates grow isothermally from solid solution in titanium binary alloys. The idea was to 
clarify whether they grow without diffusion or whether the partitioning of solute occurs after transformation. To check 
whether the latter mechanism is plausible, calculations have been conducted of the diffusion profile of solute and of the 
time required for the plate to achieve its equilibrium composition. The model based on a finite difference (FD) technique 
was used for the calculations. The results have been compared with the published experimental data and with that 
obtained using analytical technique. 
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1. Introduction 

Pure titanium melts at 1670oC and has a 
density of 4.51 g cm-3. It should, therefore, be ideal 
for use in components which operate at elevated 
temperatures, especially where large strength to 
weight ratios are required. The crystal structure of 
titanium at ambient temperature and pressure is 
close-packed hexagonal (α) with a c/a ratio of 
1.587. At about 890oC, the titanium undergoes an 
allotropic transformation to a body-centred cubic β 
phase which remains stable to the melting 
temperature. Although "commercially pure" 
titanium has acceptable mechanical properties and 
has been used previously for orthopedic and 
dental implants, for most applications titanium is 
alloyed with small amounts of aluminum and 
vanadium etc., typically 3% and 2.5% respectively, 
by weight [1,2]. Titanium alloys have very high 
tensile strength and toughness (even at extreme 
temperatures), light weight, extraordinary corrosion 
resistance, and ability to withstand extreme 
temperatures. However, the high cost of both raw 
materials and processing limit their use to military 
applications, aircraft, spacecraft, medical devices, 
and some premium sports equipment and 
consumer electronics. In titanium alloys, the 
proeutectoid reaction product often has a plate 
morphology. Considerable attention has been paid 
to the mechanism of plate formation by a number 
of researchers [3-5]. Because of the surface relief 
effect usually accompanied and other features as 

well, it was considered that the diffusionless shear 
is operative mechanism in the formation of such 
plates [6,7]. This implies that the formation process 
is essentially the repetition of displasive interfacial 
motion and for subsequent redistribution of solute 
in the region swept by interface [8-14]. The kinetics 
of supersaturated bainite plates of Ag-Cd alloy has 
been discussed by Mujahid and Bhadeshia [15]. 
The concentration gradient during the partitioning 
of solute from plate to neighbouring matrix in Ti-V 
and Ti-Fe alloys is being investigated in this 
analysis. 

According to the Aziz model [16,17] for solute 
trapping the partitioning coefficient can be written 
as: 

     (1) 

where  = D/V, cα and cI
β are the solute 

compositions in α plate and in the matrix at the 

interface, respectively. D,  and V are the 
diffusivity of solute in Ti-V alloys, interatomic 
spacing and interface velocity, respectively. The 
equilibrium partitioning coefficient [16, 17] is: 

     (2) 

where cαβ and cβα are the equilibrium solute 
compositions in the plate and matrix respectively 
for Ti-5.4at.%V alloy at the transformation 
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temperature of 680 oC. Using the values of D, 

interatomic spacing , and V as 3.97 x 10-16 m2s-1 
[18, 19], 0.25 nm [16-17] and 2.27 x 10-7ms-1 [20] 
respectively, the following value of partitioning 
coefficient has been calculated : 

Kp = 0.9381 

Which means that there is almost no 
partitioning of vanadium during the growth of α 
plates. This could support the idea that the plates 
grow with an excess of solute. The solute may then 
diffuse to the neighbouring matrix during ageing. In 
the present work the finite difference (FD) 
technique is used to examine the partitioning of 
solute from the plate into the adjacent matrix. The 
analytical model [21] has also been applied for this 
analysis. The presence of oxygen in any Ti-based 
alloy may affect the partitioning behaviour because 
of V-O and Fe-O affinity. In the present analysis it 
is assumed that the Ti-alloys (specially Ti-Fe 
alloys) contains very low level of oxygen. Hence 
this effect is not included in the calculations. 

2. The Diffusion Coefficients 

The diffusion coefficient is given by the 
following Arrhenius equation. 

D=Ae-Q/RT     (3) 

where A and Q are the frequency factor and 
activation energy respectively. R is a constant 
having the value of 8.31451 Jmol-1K-1 The values 
of A, Q and temperature range for Ti-V and Ti-Fe 
are given in Table 1. 

Table 1.    Values of A, Q and temperature range. 

Diffusion of 
A 

(m2 s-1) 
Q  

(kJmol-1) 
Temperature 

(K) 

Fe in Ti () 1.2 x 10-8 110.5 973 – 1123 [22] 

Fe in Ti () 5.6 x 10-7 131.0 1273 – 1473 [22] 

V in Ti () 1.25 x 10-6 173.3 1173 – 1573 [18,19] 

2.1. Analytical models 

Model by Enomoto and Fujita [23] 

In the diffusionless mechanism of plate 
formation, it is postulated that plates are formed 
with supersaturation of of solute - in an extreme 
case with a composition identical to the matrix - 
and subsequently, some atoms are quickly drained 
from the plates. It is useful to estimate the time 
taken for solute atoms to diffuse away to attain the 
near equilibrium solute concentration in the plate. 
The diffusion geometry of this model is shown in 
Fig. 1. 

 

 

Figure 1. Diffusion geometry taken by M. Enomoto and Fujita 
[23] for the calculation of time. 

 

Under the assumption that the diffusivity of 
solute (D) in the plate and the matrix is the same, 
the concentration of solute at distance x from the 
centre of the plate and at time t was given as [24]: 

      (4) 

where c0 is the height of the initial concentration 

and erf() is the error function. W is the half width 

of  plate i.e. . The time at which the 

concentration at the centre of the plate falls to one-
tenth of c0 may then be estimated from the 
following equation: 

     (5) 

This model also assumes that the compositions 
of alpha and beta are equal at the interface. 

Model by Bhadeshia [21] 

An analytical approximation [21], has also been 

applied to the titanium alloy. During  
transformation of Ti-V and Ti-Fe alloys, the plates 
appear to be different in composition from the 
parent phase. The partitioning of solute from plate 

into the  matrix occurs after the formation of  

plate. For a plate thickness , it is assumed that 

the flux of solute is one dimensional normal to the 

a/ interface. The time taken to diffuse all of the 

excess solute from  plate into the  matrix, t, is 
given by the following equation [21]. 

     (6) 

where D is diffusivity of solute in  matrix,  is the 

average concentration of solute in the alloy, cαβ 
and cβα are the equilibrium solute concentrations in 

the  plate and  matrix respectively. In this model, 
it is assumed that the diffusion coefficient of solute 
in the plate is much higher than that of the matrix. 
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2.2. Finite difference model 

The escape of solute from the  plate to matrix 
is examined here using a finite difference as 
discussed by Crank [25]. The matrix-plate 
aggregate is treated as a composite diffusion 
couple in which flat slabs of matrix, each of 

thickness  are welded on either side of a slab of 

plate of thickness , Fig. 2. The slab dimensions 

were chosen to compare the results with earlier 
published work [23]. The model assumes a one 
dimensional diffusion process ahead of a 
planar/interface, and is symmetrical about the 
centerline so that only half the couple needs to be 
considered in the finite difference analysis [26].  

 

 

Figure 2. Schematic illustration of the plate/matrix diffusion 
couple. 

The matrix and plate regions were divided into 

a number of slices n and n, respectively, with  

     (7) 

     (8) 

A compromise has to be made between 
accuracy and computer time in the choice of the 
number of slices. The larger the number of slices, 
the greater the accuracy of the method, although 
the calculations are then more expensive in terms 

of computing time. The choice of n, is initially 

made arbitrarily, so that  can be calculated. This 

in turn leads to the time t, representing the interval 
between successive recalculations of the 
concentration profile of the whole couple: 

     (9) 

where r is a grid parameter in the finite difference 
method, which can be set to a smaller value for 

higher accuracy. Having thus fixed the interval t, 

the thickness of the  plate follows as 

   (10) 

where r is another dimensionless grid parameter, 
this time for a plate, which in the present work is 

taken to be the same as r. The finite difference 
analysis is carried out using non-dimensional 

variables, the concentrations c and distances  

being normalized with respect to average 
concentration in the alloy and the thickness of 
matrix, respectively [25]. The normalized variables 
are defined as follows 

   (11) 

   (12) 

   (13) 

where D is the diffusion coefficient. Since the  

plate occupies space 0    ( /2 ), the region 

is covered by a grid of rectangles of sides  and 

. The coordinates of a grid point ( ) can be 

written ( ), where i and j are integers. The 

normalized concentration at that point (for the 

 plate) is written  

The explicit finite difference formula is then 
given by Crank [25] : 

   (14) 

where  is a grid parameter for the 

finite difference method. The normalized 

concentration  in the  interface has been 

taken as  . Relationship (14) has been used 

to calculate the value of c at all points along 
successive time rows of the grid, for the initial 

concentrations  and  for all 

. 

A similar analysis was carried out for the matrix, 
and the diffusion processes in the plate and matrix 
were related by using the mass conservation 
condition which ensures that the amount of 
vanadium leaving the plate at any instant is 
identical to that entering the matrix (i.e. the fluxes 
to and from the interface must be equal): 
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   (15) 

where  for all . Thus the value of 

 can be obtained by using the above 

equation. 

3. Results and Discussion 

The finite difference (FD) technique is 
employed for the calculation of diffusion equation 
in order to study the partitioning of solute from the 
plates to the matrix. These results were compared 
with that of Enomoto and Fujita [23]. The diffusion 
profile at the plate interface given by Enomoto and 
Fujita [23] is based on the experimental data 
whereas their results of time to escape solute from 
plate are based on a theoretical model. Therefore, 
the finite difference results of diffusion profile were 
compared with the experimental data of Enomoto 
and Fujita [23]. The FD results of time to escape 
solute from plate and the results of Bhadeshia 
analytical model [21] were compared with that of 
Enomoto and Fujita [23]. The earlier theoretical 
results of Enomoto and Fujita [23] show that the 
time at which the concentration at the centre of the 

plate falls to one – tenth of c0 (0.1) is larger than 
the time actually needed for each plate to grow to 
the observed thickness. They regard this as 
reasonable because the redistribution of solute 
after the plate formation requires the diffusion of 
atoms from the interior of the plates and thus, may 
take a longer time than the diffusion driven by the 
steep concentration gradient at the advancing 
interface as postulated by the diffusional 
mechanism. The semi-infinite model applied by 
Enomoto and Fujita is based on the simplest set of 
assumptions. Therefore, this model is not realistic 

for the compositions across the / interface, 
where interfacial equilibrium is expected so that the 
compositions of alpha and beta are not equal at 
the interface. Hence this model may not give 
precisely accurate results. 

 

Figure 3. Comparison between calculated and measured 

profile [23] normal to / interface in the Ti-5.4 at.% 
V alloy reached at 680 oC for 30 s. 

 

Figure 4. Comparison between calculated and measured 

profile [23] normal to / interface in the Ti-5.1 at.% 
Fe alloy reached at 730 oC for 180 s. 

A rather different approach was used by 
Bhadeshia [21] in which solute atoms are depleted 
from the plates. As in case of ferrous alloys [26], 
the analysis based on this model may not be 
completely satisfactory given that it does not allow 

for the coupling of fluxes at the / interface. It, 
therefore, contains nothing about diffusion in the 
plate. The Bhadeshia model represents a situation 
where the diffusivity is two orders of magnitude 
larger in the plate than in the matrix. Therefore, the 
diffusion with the plate can be ignored so that 
elemental redistribution is dominated by diffusion 
through the matrix. This also relaxes the interfacial 
condition balancing the flux across the interface 
and the concentration gradients either side of the 
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interface. These conditions do not apply to the Ti-V 
or Ti-Fe systems. Because of these limitations, this 
model may not give satisfactory results. 

The finite difference (FD) model is able to deal 
with the interfacial equilibrium and different 
diffusivities and is cable to give good fit as long as 
the fluxes are balanced. It takes into account the 

coupling of fluxes in the  matrix and  plate 
through equation 15. For Ti-Fe alloys different 

diffusion coefficients for  and  phases were used 
whereas for Ti-V alloy the diffusion coefficient of 

vanadium in  phase is assumed to be same as in 

 phase. Typical concentration gradients that 
develop during the partitioning process for a freshly 
formed plate for Ti-5.4 at.%V of 500 nm projected 
length and aged for 30 s is illustrated in Fig. 3 and 
for Ti-5.1 at.%Fe of 840 nm projected length and 
aged for 180 s is illustrated in Fig. 4. The figures 
compare the calculated profile with the earlier data 
of Enomoto and Fujita [23]. The comparison shows 
the agreement upto certain degree. The trend in 
both the data is however the same. For Ti-5.4 
at.%V alloy, both theoretical and experimental data 

[23] show that the vanadium concentration in  
matrix increases gradually as the interface is 

approached. In  plate, the experimental 
concentration decreases more rapidly than the 
calculated data from the middle of the plate 
towards the interface. However in FD results no 
partitioning is observed for Ti-5.1 at. %Fe at an 
ageing of 180 seconds whereas the data of 
Enomoto and Fujita shows some partitioning, as 
shown in Fig. 4. 

The time taken to escape solute from plate to 
matrix at a variety of temperatures has also been 
calculated. Fig. 5 illustrates the time taken to 

diffuse all the excess Fe to  matrix versus 
different transformation temperatures in Ti-5.1 at 
%Fe alloy. The time taken to diffuse all the excess 

Fe to  matrix versus transformation temperatures 
in Ti-2.6 at %Fe alloy is shown in Fig. 6. For both 
of Ti-Fe alloys, the comparison of the values 
calculated using the finite difference method with 
those calculated by the analytical method [21] 
shows that the analytical model by Bhadeshia [21] 
underestimates the diffusion time. This is due to 
the fact that the Bhadeshia model does not take 
into account the coupling of fluxes at the interface. 

 

 

Figure 5. Time taken for excess Fe to diffuse to the 
neighboring matrix as a function of temperature in 
Ti-5.1at.%Fe. 

 

Figure 6: Time taken for excess Fe to diffuse as a function of 

temperature from the  plates of Ti-2.6at.%Fe. 

4. Conclusions 

The partitioning of excess solute from a plate in 
the titanium binary alloys have been examined. For 
Ti-5.4 at %V alloy, both theoretical and earlier 
experimental results of Enomoto and Fujita [23] 

show that the vanadium concentration in  matrix 
increases gradually as the interface is approached. 
In case of Ti-5.1 at.%Fe alloy, the FD profile shows 
that the plate has been depleted before the ageing 
time of 180 s whereas data of Enomoto and Fujita 
still show some partitioning. The anlytical data of 
Bhadeshia model for Ti-5.1 at.%Fe and Ti-2.6 at 
%Fe alloys underestimates the time to diffuse 

excess Fe to  matrix at various transformation 
temperatures because it do not take into account 
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the coupling of fluxes at the / interface. 
However, the trends of both types of results are 
similar. 
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