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This paper investigates the pipe flow of an Oldroyd 8-constant fluid. The governing nonlinear equations are first 
modelled and then solved analytically by utilizing homotopy analysis method (HAM). The convergence of the developed 
series solution is established. The influence of the important parameters of interest is seen on velocity. 
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1. Introduction 

It is a known fact that complex nature of non-
Newtonian fluids cannot be described by a single 
constitutive equations. Because of this reason, 
several constitutive equations have been 
suggested for the non-Newtonian fluids. Amongst 
these fluid models, differential type fluids have 
attracted much attention as well as controversies. 
Another type of fluids are rate type fluids. The very 
simple subclasses of rate type fluids are the 
Maxwell and Oldroyd 3-constant fluids. But these 
fluids do not include rheological effects when 
steady unidirectional flows are considered. 
However, an Oldroyd 8-constant fluid includes 
such effects even for unidirectional steady flow. 
Keeping various aspects of non-Newtonian fluids, 
several investigators [1-10] are engaged in 
studying the flows as the initial and boundary value 
problems. 

The purpose of the present communication is 
two fold. Firstly to consider the pipe flow of an 
Oldroyd 8-constant fluid. Secondly to obtain the 
analytic solution of the non-linear differential 
system using homotopy analysis method [11]. The 
HAM is a powerful mathematical technique for 
solving nonlinear problems and have already been 
applied for the solution of many nonlinear 
problems [12-22]. This paper is organized as 
follows. In section 2 the problem is formulated. The 
analytic solution is presented in section 3. The 
convergence of the obtained solution is developed 
in section 4. The results of pertinent parameters on 
the flow are also included in the same section. 
Section 5 comprises the concluding remarks. 

2. Mathematical Analysis 

Let us consider the steady flow of an Oldroyd 8-
constant fluid in a circular pipe. The z-axis is taken 
along the axis of the flow. The flow in the pipe is 
induced due to constant applied pressure gradient 
in the z-direction. Defining 

 ]ru,0,0[V      (1) 

the incompressibility condition is automatically 
satisfied and r and z components of momentum 
equation yield 
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where for an Oldroyd 8-constant fluid the 
constitutive equation for the Cauchy stress is 

.p SIT       (4) 

In the above equation p is the pressure, I is the 
identity tensor and the extra stress tensor S is 
given by 
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in which 

VLLLA grad,1  T      (6) 

and A1 is the first Rivlin-Ericksen tensor, λi (i=1 to 
7) are material parameters of the fluid and are 
assumed constants. The contravariant convected 
derivative D/Dt for steady flow is defined as 

  .
Dt

D T
SLLSSV

S
       (7) 

The stress is considered as 
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Making use of Eqs. (1) and (8) in Eq. (5) one 
obtains 
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Now first the velocity field is determined from 
Eq. (3) and then the pressure field can be easily 
calculated using Eq. (2). The relevant boundary 
conditions are 

,0r   at   
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Equations (3), (8) and (9) become 
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where bars have been suppressed for simplicity. 
Integrating Eq. (22) one obtains 
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where C is a constant of integration and can be 
calculated using condition (23) and is given by 

.0C      (27) 

Equation (26) takes the form 
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Equation (28) subject to boundary condition 
(24) has been solved using homotopy analysis 
method in the next section. 

3. HAM Solution 

3.1 Zeroth-order deformation equation 

The function u(r) can be expressed by the set of 
base functions 

 0krk     (29) 

in the form 
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where am,k are the coefficients. By considering the 
Rule of solution expressions for u(r) and Eqs. (24) 
and (28) one can choose 
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as the initial approximation of u(r) 

  uu L    (32) 

is the auxiliary linear operator and 

  ,0C1 L    (33) 

where C1 is an arbitrary constant. 

Eq. (28) suggests that the nonlinear operator is of 
the form 
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The zeroth order deformation problem can be 
constructed by taking a non-zero auxiliary 
parameter   

         ,p,ruprup,rup1 0 NL     (35) 

  ,0p,1u     (36) 

where p [0,1] is the embedding parameter. For p 
= 0 and p = 1, one respectively has 

       .ru1,ru   ,ru0,ru 0     (37) 

When p increases from 0 to 1, u(r,p) varies 
continuously from initial guess u0(r) to the final 
solution u(r). By Taylor's theorem and Eq. (37) one 
can write 
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and convergence of series (38) depends upon  . 
Assume that   is selected such that the series 
(38) is convergent at p = 1, then due to Eq. (37) 
one get 
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3.2. mth-order deformation equation 

Differentiating m times the zeroth order 
deformation Eq. (35) with respect to p and then 
dividing by m! and finally setting p = 0 the following 
mth-order deformation problem can be obtained 

      ,rruru m1mmm RL      (41) 

  ,01um     (42) 
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in which 
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Let )r(u*
m  denotes a special solution of Eqs. (41) 

and (42) and using Eq. (33) one can write the 
general solution 

    ,Cruru 1
*
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and Ci can be determined by using the boundary 

condition (31) and is given by 
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This is an easy way to solve linear Eqs. (41) 
subject to conditions (42) in the order m = 1,2,3,... 
with the help of symbolic computation software 
MATHEMATICA. 

4. Analysis of the Results 

The convergence of the series (40) strongly 
depends upon the value of the auxiliary parameter 
  as mentioned by Liao [11]. The valid region of 
the values of the parameter   can be obtained by 
plotting the  -curve. The  -curves for different 
values of the fluid parameters α1 and α2 for 15th 
order of approximation are displayed in Figs. 1 and 
2. In Fig. 1 the influence of parameter α1 on the 
value of   is shown when α2 is kept fixed. It is 
evident from Fig. 1 that the range of   is -1<  <0 
and with an increase in parameter α1 the 
admissible range shrinks towards zero. Fig. 2 gives 
the variation in the admissible range of   when 
one vary α2 keeping α1 fixed. Fig. 2 elucidates that 
the range of   is -1.3<  <0 and the admissible 
range interval is stretched by an increase in α2. To 
see the effects of parameters α1 and α2 on the 
velocity Figs. 3 and 4 are plotted. Figure 3 depicts 
that the velocity and boundary layer thickness 
increases by increasing the parameter α1. However 
the effects of α2 are quite opposite to that of α1.and 
are shown in Fig. 4. 

 

Figure 1.  -curves for different values of fluid parameter α1. 

 

Figure. 2.  -curves for different values of fluid parameter α2. 

 

Figure 3. Influence of parameter α1 on the velocity. 
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Fig. 4. Influence of parameter α2 on the velocity. 

5. Conclusions 

This paper deals with the analytic solution for 
the pipe flow of an Oldroyd 8-constant fluid. The 
analytic solution has been obtained for the 
governing problem using homotopy analysis 
method. The convergence of the series solution is 
explicitly discussed. The results are sketched and 
discussed for the variations of the fluid parameters. 
It is found that both the fluid parameters α1 and α2 
have opposite effects on the velocity profile. The 
corresponding results of Oldroyd 3-constant 
(λ3=λ4=λ5=λ6=λ7=0) and Oldroyd 6-constant fluids 
(λ6=λ7=0) can be obtained from the presented 
solution as special cases. 
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