

www.thenucleuspak.org.pk

The Nucleus ISSN 0029-5698 (Print) ISSN 2306-6539 (Online)

Induced Averaging Aggregation Operators with Interval Pythagorean Trapezoidal Fuzzy Numbers and their Application to Group Decision Making

M. Shakeel¹, K. Rahman¹, M.S.A. Khan¹ and Murad Ullah^{2*}

¹Department of Mathematics, Hazara University, Mansehra, KPK, Pakistan ²Department of Mathematics, Islamia College University, Peshawar, KPK, Pakistan

shakeel_maths@hu.edu.pk, khaista355@yahoo.com, sajjadalimath@yahoo.com, muradullah90@yahoo.com

ARTICLE INFO

Article history :Received :08 May, 2017Accepted :28 June, 2017Publsihed :30 June, 2017

Keywords : IPTFN I-IPTFOWA operator (I-IPTFHA) operator MAGDM problem

1. Introduction

The notion of fuzzy set theory was established by L.A. Zadeh [1] in 1965. In fuzzy set theory the degree of member ship function was discussed. Fuzzy set theory has been studied in various direction such that, homoeopathic verdict, computer science, fuzzy algebra and decision making problems. In 1986 Atanassov [2] present the idea of IFS, and discussed the degree of membership as well as the degree of non-membership of a set by a function. IFS is the Fuzzy set theory has been studied in various direction such that, homoeopathic verdict, computer science, fuzzy algebra and decision making problems. In1986 Atanassov [2] obtainable the idea of . IFS, and discussed the degree of membership as well as the degree of non-membership of a set by a function. IFS is the generalization of fuzzy set theory. There are many advantage of IFS theory such as using in engineering, management science, computer science [3-8]. Atanassov also presented some relation and changed mathematically operations such as, algebraic product, sum, union, intersection and complement [9, 10]. He also introduced the thought of pseudo fixed topics of all operators defined over the IFSs [11]. In 1986, many scholars [12] have complete works in the field of IFS and its presentations. Mostly, data aggregation is a very fundamental research area in IFS theory that has been accepting increasingly center. Xu and Yager [13] introduced the view of dynamic IFWA operator and developed a method to explain the dynamic intuitionistic fuzzy multi attribute decision making (MADM) problems. Xu and Chen [14]

ABSTRACT

Pythagorean fuzzy number is a new tool for uncertainty and vagueness. It is a generalization of fuzzy numbers and intuitionistic fuzzy numbers. This paper deal with induced interval Pythagorean trapezoidal fuzzy numbers. In this paper we introduce induced interval Pythagorean trapezoidal fuzzy numbers and some operation on I-IPTFN, and we also define different types of operators for aggregating induced interval Pythagorean trapezoidal fuzzy numbers. We present induced interval Pythagorean trapezoidal fuzzy numbers and induced interval Pythagorean trapezoidal fuzzy numbers. We present induced interval Pythagorean trapezoidal fuzzy numbers. We present induced interval Pythagorean trapezoidal fuzzy hybrid averaging (I-IPTFOWA) operator and induced interval Pythagorean trapezoidal fuzzy hybrid averaging (I-IPTFHA) operator. Finally we develop a general algorithm for group decision making problem.

introduced some new types of aggregation operators including, interval-valued intuitionistic fuzzy hybrid averaging (IVIFHA) operator, interval-valued intuitionistic ordered weighted fuzzy averaging (IVIFOWA) operator, interval-valued intuitionistic fuzzy weighted averaging (IVIFWA) operator and also proved the importance of interval-valued intuitionistic fuzzy hybrid averaging (IVIFHA) operator to multi criteria group decision making problems under interval-valued intuitionistic fuzzy data. Furthermore in Xu and Chen [15] introduced the idea of interval-valued intuitionistic fuzzy hybrid geometric (IVIFGH) operator, intervalvalued intuitionistic fuzzy ordered weighted geometric (IVIFOWG) operator, interval-valued intuitionistic fuzzy weighted geometric (IVIFWG)operator.

Like the other scholars, Wang [16] also worked in the field of intuitionistic fuzzy set and presented the knowledge of intuitionistic trapezoidal fuzzy (ITFNs) numbers and interval-valued intuitionistic trapezoidal fuzzy (IVITFNs) numbers. Wang [17] not only established the idea of these numbers but also introduced the concept of Hamming distance for TIFNs as well as introduced a series of averaging aggregation operators for ITFNs such as ITFHWA, ITFOWA and ITFWA aggregation operators. In 2013, Yager [18] also worked in the field of Pythagorean fuzzy (PFs) set and introduced the square of their sum less than or equal to 1. Su [19] also worked in the field of aggregation operators and developed some new types aggregation operators

including induced intuitionistic fuzzy hybrid averaging (I-IFHA) operator, induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA)operator, induced intuitionistic fuzzy hybrid geometric (I-IFHG) operator, induced interval intuitionistic fuzzy ordered weighted averaging aggregation (I-IIFOWA) operator, induced interval-valued intuitionistic fuzzy hybrid averaging aggregation (I-IIFHA) operator and induced interval-valued intuitionistic fuzzy hybrid geometric aggregation (I-IIFHA) operator and induced interval-valued intuitionistic fuzzy hybrid geometric aggregation (I-IIFHA) operator and induced interval-valued intuitionistic fuzzy hybrid geometric aggregation (I-IIFHG) operator. Rahman [20, 21] worked on various types of induced Pythagorean aggregation operators.

Thus an advantage of the above mention aggregation operators we develop a series of induced interval Pythagorean trapezoidal fuzzy aggregation operators. Containing the interval-valued Pythagorean trapezoidal fuzzy weighted averaging (IPTFWA) operator, induced interval-valued Pythagorean trapezoidal fuzzy ordered weighted averaging (I-IPTFOWA) operator and the induced interval –valued Pythagorean trapezoidal fuzzy hybrid averaging (I-IPTFHA) operator.

In Section 2 we give the concept of some basic definitions and operators which will be used in our later sections. In Section 3, we develop the concept of the IPTFWA and the I-IPTFHA operators and their properties. In Section 4 we give an application of I-IPTFOWA and I-IPTFHA operators to multiple attribute group decision making (MAGDM) problems with interval Pythagorean trapezoidal fuzzy information. In Section 5 we give numerical example. Concluding remarks are made in Section 6.

2. Preliminaries

In this section we define basic definition, results and operational laws.

Definition 2.1 [2] Let a set L be fixed. An IFS U in L is an object having the form:

$$U = \{ \left\langle x, \Psi_u(l), \Upsilon_u(l) \right\rangle \mid l \in L \}$$

where $\Psi_u : L \rightarrow [0,1]$ and $\Upsilon_u : L \rightarrow [0,1]$

represent the degree of membership and the degree of non-membership of the element $l \in L$ to U, respectively, and for all $l \in L$:

$$0 \le \Psi_u(l) + \Upsilon_u(l) \le 1$$

For each (IFS) U in L

$$\pi_U(l) = 1 - \Psi_U(l) - \Upsilon_U(l)$$
, for all $l \in L$

 $\pi_A(l)$ is called the degree of indeterminacy of l to U.

Definition 2.2 [17] Let p be trapezoidal fuzzy number, its membership function

$$\Psi_{p}(l) = \begin{cases} \frac{x-p}{q-p}\Psi_{p}, & p \le l \le q; \\ \Psi_{p}, & q \le l \le r; \\ \frac{s-x}{s-r}\Psi_{p}, & r \le l \le s; \\ 1, & \text{otherwise,} \end{cases}$$
(1)

Its non-membership function is

$$\Upsilon_{p}(l) = \begin{cases} \frac{s-l+\Upsilon_{p}(l-p_{1})}{q-p} & p_{1} \leq l \leq q; \\ \Upsilon_{p}, & q \leq l \leq r; \\ \frac{l-r+\Upsilon_{p}(s_{1}-l)}{s_{1}-r}, & r \leq l \leq s_{1}; \\ 0, & \text{otherwise,} \end{cases}$$
(2)

Where $0 \le \Psi_{\tilde{\alpha}} \le 1$; $0 \le \Upsilon_{\tilde{\alpha}} \le 1$;

$$0 \leq (\Psi_{\tilde{\alpha}}) + (\Upsilon_{\tilde{\alpha}}) \leq 1; \ p,q,r,s \in \mathbb{R}.$$

Then,

$$\tilde{p} = \left\langle \left(\left[p, q, r, s \right]; \Psi_{\tilde{\alpha}} \right), \left(\left[p_1, q, r, s_1 \right]; \Upsilon_{\tilde{\alpha}} \right) \right\rangle$$

is called trapezoidal fuzzy number. For convenience,

$$\tilde{p} = ([p,q,r,s]; \Psi_{\tilde{\alpha}}, \Upsilon_{\tilde{\alpha}}).$$

Definition 2.3 [20] An OWA operator of n dimension is a mapping, *OWA*: $\Omega^n \to \Omega$ hat has an associated

vector
$$\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_n)^T$$
 with $\mu_j \in [0, 1]$ and $\boldsymbol{\Sigma}^n$ is a local set of the set

 $\sum_{j=1}^{n} \mu_j = 1$. Furthermore

$$OWA(\tilde{\alpha}_1, \tilde{\alpha}_2, ..., \tilde{\alpha}_n) = \sum_{j=1}^n \mu_j C_j$$

 C_j is the largest of $\tilde{\alpha}_i$.

Definition 2.4 [21] an I - OWA operator is defined as follows:

$$IOWA(\langle u_1, \tilde{\alpha}_1 \rangle, \langle u_2, \tilde{\alpha}_2 \rangle, ..., \langle u_n, \tilde{\alpha}_n \rangle) = \sum_{j=1}^n \mu_j C_j$$

where $\mu = (\mu_1, \mu_2, ..., \mu_n)^T$ is the weighted vector with conditions, $\mu_j \in [0,1]$ and $\sum_{j=1}^n \mu_j = 1$. Then C_j is $\tilde{\alpha}_j$ value of *OWA* pair $\langle \mu_j, \tilde{\alpha}_j \rangle$ having the jth largest μ_j which is referred to as the order inducing variable

Definition 2.5 [17] Let $\tilde{p}_1 = ([p_1, q_1, r_1, s_1]; \Psi_{\tilde{\alpha}_1}, \Upsilon_{\tilde{\alpha}_1})$, and $\tilde{p}_2 = ([p_2, q_2, r_2, s_2]; \Psi_{\tilde{\alpha}_2}, \Upsilon_{\tilde{\alpha}_2})$, are two trapezoidal fuzzy numbers, and $\delta \ge 0$.

Then

(1)
$$\tilde{p}_1 \oplus \tilde{p}_2 = \begin{pmatrix} [p_1 + p_2, q_1 + q_2, r_1 + r_2, s_1 + s_2]; \\ (\Psi_{\tilde{\alpha}_1}) + (\Psi_{\tilde{\alpha}_2}) - (\Psi_{\tilde{\alpha}_1} \Psi_{\tilde{\alpha}_2}), \Upsilon_{\tilde{\alpha}_1} \Upsilon_{\tilde{\alpha}_2} \end{pmatrix};$$

(2)
$$\tilde{p}_1 \otimes \tilde{p}_2 = \begin{pmatrix} [p_1 p_2, q_1 q_2, r_1 p_2, s_1 s_2]; \Psi_{\tilde{\alpha}_1} \Psi_{\tilde{\alpha}_2}, \\ (\Upsilon_{\tilde{\alpha}_1}) + (\Upsilon_{\tilde{\alpha}_2}) - (\Upsilon_{\tilde{\alpha}_1} \Upsilon_{\tilde{\alpha}_2}) \end{pmatrix};$$

(3)
$$\delta \tilde{p} = ([\delta p, \delta q, \delta r, \delta s]; 1 - (1 - \Psi_{\tilde{\alpha}})^{\delta}; (\Upsilon_{\tilde{\alpha}})^{\delta});$$

(4)
$$\tilde{p}^{\delta} = \left(\left[p^{\delta}, q^{\delta}, r^{\delta}, s^{\delta} \right]; \Psi^{\delta}_{\tilde{\alpha}}, 1 - \left(1 - \Upsilon_{\tilde{\alpha}} \right)^{\delta} \right).$$

Example 2.6: Let

$$\begin{split} \tilde{p} &= (\left[0.5, 0.4, 0.6, 0.9\right]; \ 0.3, 0.5), \\ \tilde{p}_1 &= (\left[0.3, 0.4, 0.5, 0.3\right]; \ 0.4, 0.6), \\ \tilde{p}_2 &= (\left[0.4, 0.5, 0.4, 0.3\right]; \ 0.5, 0.4) \end{split}$$

are trapezoidal fuzzy numbers and $\delta = 0.5$ Then we verify the above results such that,

(1)
$$\tilde{p}_1 \oplus \tilde{p}_2 = \begin{pmatrix} [0.3 + 0.4, 0.4 + 0.5, 0.5 + 0.4, 0.3 + 0.3]; \\ (0.4) + (0.5) - (0.4)(0.5), (0.6)(0.4) \end{pmatrix} \\ = ([0.7, 0.9, 1, 0.6]; 0.7, 0.24).$$

(2)
$$\tilde{p}_1 \otimes \tilde{p}_2 = \begin{pmatrix} [(0.3)(0.4), (0.4)(0.5), (0.5)(0.4), (0.3)(0.3)]; \\ (0.4)(0.5), (0.6+0.4) - (0.6)(0.4) \end{pmatrix} = ([0.12, 0.2, 0.2, 0.9]; 0.2, 0.76).$$

(3)
$$\delta \tilde{p} = \begin{pmatrix} [(0.5)(0.5),(0.5)(0.4),(0.5)(0.6),(0.5)(0.9)];\\ (1-(1-0.3)^{0.5}(0.5)^{0.5} \end{pmatrix}$$
$$= ([0.25,0.2,0.3,0.45]; 0.16,0.70).$$

(4)
$$\tilde{p}^{\delta} = \begin{pmatrix} \left[(0.5)^{0.5}, (0.4)^{0.5}, (0.6)^{0.5}, (0.9)^{0.5} \right]; \\ (0.3)^{0.5} 1 - (1 - 0.5)^{0.5} \\ = (\left[0.70, 0.63, 0.85, 0.94 \right]; 0.59, 0.29 \right). \end{cases}$$

Definition 2.7: [18] Let L be a fixed set. The PFS U in L is the thing taking the shape :

$$A = \{ \langle l, \Psi_U(l), \Upsilon_U(l) \rangle | l \in L \}$$

where $\Psi_A : L \rightarrow [0,1]$ and $\Upsilon_A : L \rightarrow [0,1]$ represent the degree of membership and the degree of nonmembership of the element $l \in L$ to A, respectively, and for every $l \in L$:

$$0 \leq \Psi_U \leq 1, 0 \leq \Upsilon_U \leq 1, 0 \leq \Psi_U^2(l) + \Upsilon_U^2(l) \leq 1$$

For each (PFS)U in L

$$\pi_U(l) = \sqrt{1 - \Psi_U^2(l) - \Upsilon_U^2(l)}, \text{ for all } l \in L$$

 $\pi_U(l)$ is called the degree of indeterminacy of l to U.

Definition 2.8 [22] Let $\tilde{p} = (\Psi_{\alpha}, \Upsilon_{\alpha}), \quad \tilde{p}_1 = (\Psi_{\alpha_1}, \Upsilon_{\alpha_1})$ and $\tilde{p}_2 = (\Psi_{\alpha_2}, \Upsilon_{\alpha_2})$ be three (PFN_s) and $\delta > 0$. Then,

1.
$$\tilde{p}^{c} = (\Upsilon_{\alpha}, \Psi_{\alpha});$$

2. $\tilde{p}_{1} \oplus \tilde{p}_{2} = \left(\sqrt{(\Psi_{\tilde{\alpha}_{1}})^{2} + (\Psi_{\tilde{\alpha}_{2}})^{2} - (\Psi_{\tilde{\alpha}_{1}}^{2}\Psi_{\tilde{\alpha}_{2}}^{2})}, \Upsilon_{\tilde{\alpha}_{1}}\Upsilon_{\tilde{\alpha}_{2}}\right);$
3. $\tilde{p}_{1} \otimes \tilde{p}_{2} = \left(\Psi_{\tilde{\alpha}_{1}}\Psi_{\tilde{\alpha}_{2}}, \sqrt{(\Upsilon_{\tilde{\alpha}_{1}})^{2} + (\Upsilon_{\tilde{\alpha}_{2}})^{2} - (\Upsilon_{\tilde{\alpha}_{1}}^{2}\Upsilon_{\tilde{\alpha}_{2}}^{2})}, \Lambda_{\tilde{\alpha}_{1}}^{2}\Psi_{\tilde{\alpha}_{2}}^{2}\right);$
4. $\delta \tilde{p} = \sqrt{1 - \left(1 - \Psi_{\tilde{\alpha}}^{2}\right)^{\delta}}; (\Upsilon_{\tilde{\alpha}})^{\delta});$
5. $\tilde{p}^{\delta} = (\Psi_{\tilde{\alpha}}^{\delta}, \sqrt{1 - \left(1 - \Upsilon_{\tilde{\alpha}}^{2}\right)^{\delta}}).$

];

Example 2.9: Let $\tilde{p} = (0.5, 0.4), \tilde{p}_1 = (0.6, 0.3), \tilde{p}_2 = (0.2, 0.4)$ are Pythagorean fuzzy numbers and $\delta = 0.6$, then we verify the above results such that,

2.
$$\tilde{p}_{1} \oplus \tilde{p}_{2} = \left(\sqrt{(0.5)^{2} + (0.2)^{2} - (0.5)^{2}(0.2)^{2}}, (0.3)(0.4)\right)$$

 $= (0.52, 0.12).$
3. $\tilde{p}_{1} \otimes \tilde{p}_{2} = \left((0.6)(0.2), \sqrt{(0.3)^{2} + (0.2)^{2} - (0.3)^{2}(0.2)^{2}}\right)$
 $= (0.12, -0.0012).$
4. $\delta \tilde{p} = \left(\sqrt{(1 - (1 - 0.5^{2})^{0.6}}, (0.4)^{0.6}\right)$
 $= (039, 0.57).$
5. $\tilde{p}^{\delta} = \left((0.5)^{0.6}, \sqrt{(1 - (1 - 0.4^{2})^{0.6}}\right)$
 $= (065, 0.31).$

Definition 2.10: Let

 $\tilde{p} = ([p,q,r,s]; \Psi, \Upsilon) = ([p,q,r,s]; [\underline{\Psi}, \overline{\Psi}], [\underline{\Upsilon}, \overline{\Upsilon}])$ be an interval Pythagorean trapezoidal fuzzy number, where $\Psi = [\underline{\Psi}, \overline{\Psi}]$ and $\Upsilon = [\underline{\Upsilon}, \overline{\Upsilon}]$ represent an interval, hence $\Psi \subset [0,1]$ and $\Upsilon \subset [0,1]$, such that $0 \le \Psi^2 + \Upsilon^2 \le 1$.

Definition 2.11: Let $\tilde{p}_1 = ([p_1, q_1, r_1, s_1]; [\underline{\Psi}_1, \overline{\Psi}_1], [\underline{\Upsilon}_1, \overline{\Upsilon}_1])$, and $\tilde{p}_2 = ([p_2, q_2, r_2, s_2]; [\underline{\Psi}_1, \overline{\Psi}_2], [\underline{\Upsilon}_2, \overline{\Upsilon}_2])$, be two I - PTF, numbers, and $\delta \ge 0$. Then,

(1)

$$\tilde{p}_{1} \oplus \tilde{p}_{2} = \begin{pmatrix} [p_{1} + p_{2}, q_{1} + q_{2}, r_{1} + r_{2}, s_{1} + s_{2}]; \\ \left[\sqrt{(\underline{\Psi}_{1})^{2} + (\underline{\Psi}_{2})^{2} - (\underline{\Psi}_{1} \underline{\Psi}_{2})^{2}}, \underline{\Upsilon}_{1} \underline{\Upsilon}_{2} \right] \\ , \left[\sqrt{(\overline{\Psi}_{1})^{2} + (\overline{\Psi}_{2})^{2} - (\overline{\Psi}_{1} \overline{\Psi}_{2})^{2}}, \overline{\Upsilon}_{1} \overline{\Upsilon}_{2} \right] ;$$

142

$$(2) \qquad \tilde{p}_{1} \otimes \tilde{p}_{2} = \begin{pmatrix} [p_{1}p_{2}, q_{1}q_{2}, r_{1}r_{2}, s_{1}s_{2}]; \\ \left[\underline{\Psi}_{1}\underline{\Psi}_{2}, \sqrt{\underline{\Upsilon}_{1}^{2} + \underline{\Upsilon}_{2}^{2} - (\underline{\Upsilon}_{1}\underline{\Upsilon}_{2})^{2}}\right], \\ \left[\overline{\Psi}_{1}\overline{\Psi}_{2}, \sqrt{\overline{\Upsilon}_{1}^{2} + \overline{\Upsilon}_{2}^{2} - (\overline{\Upsilon}_{1}\overline{\Upsilon}_{2})^{2}}\right] \end{pmatrix};$$

$$(3) \qquad \delta \tilde{p} = \begin{pmatrix} [\delta p, \delta q, \delta r, \delta s]; \left[\sqrt{1 - (1 - \underline{\Psi}_{\tilde{\alpha}}^{2})^{\delta}}, (\underline{\Upsilon}_{\tilde{\alpha}})^{\delta}\right], \\ \left[\sqrt{1 - (1 - \overline{\Psi}_{\tilde{\alpha}}^{2})^{\delta}}, (\overline{\Upsilon}_{\tilde{\alpha}})^{\delta}\right] \end{pmatrix};$$

$$(4) \qquad \tilde{p}^{\delta} = \begin{pmatrix} \left[p^{\delta}, q^{\delta}, r^{\delta}, s^{\delta}\right]; \left[\underline{\Psi}_{\tilde{\alpha}}^{\delta}, \sqrt{1 - (1 - \underline{\Upsilon}_{\tilde{\alpha}}^{2})^{\delta}}\right], \\ \left[\overline{\Psi}_{\tilde{\alpha}}^{\delta}, \sqrt{1 - (1 - \overline{\Upsilon}_{\tilde{\alpha}}^{2})^{\delta}}\right] \end{pmatrix}.$$

Example 2.12: Let

$$\begin{split} \tilde{p} &= ([0.3, 0.4, 0.5, 0.6]; [0.7, 0.2], [0.5, 0.2]), \\ \tilde{p}_1 &= ([0.3, 0.4, 0.5, 0.6]; [0.8, 0.5], [0.6, 0.4]), \\ \tilde{p}_2 &= ([0.5, 0.3, 0.4, 0.4]; [0.8, 0.4], [0.8, 0.3]) \end{split}$$

are Pythagorean trapezoidal fuzzy numbers and $\delta = 0.4$ Then we verify the above results such that,

$$(1)_{\tilde{p}_{1} \oplus \tilde{p}_{2} = \begin{pmatrix} [0.3 + 0.5, 0.4 + 0.3, 0.5 + 0.4, 0.6 + 0.4]; \\ \left[\sqrt{(0.8)^{2} + (0.8)^{2} - (0.8)^{2}(0.8)^{2}}, (0.6)(0.8)\right], \\ \left[\sqrt{(0.5)^{2} + (0.4)^{2} - (0.5)^{2}(0.4)^{2}}, (0.4)(0.3)\right] \end{pmatrix}$$
$$= ([0.8, 0.7, 0.9, 0.1]; [0.8, 0.48], [0.45, 0.12]).$$

(2)

$$\tilde{p}_{1} \otimes \tilde{p}_{2} = \begin{cases} [(0.8)(0.5), (0.4)(0.3), (0.5)(0.4), (0.6)(0.4)]; \\ [(0.8)(0.8), \sqrt{(0.6)^{2} + (0.8)^{2} - (0.6)(0.8)}], \\ [(0.5)(0.4), \sqrt{(0.4)^{2} + (0.3)^{2} - (0.4)(0.3)},] \\ = ([0.15, 0.12, 0.2, 0.24]; [.64, .72], [.2, .36]). \end{cases}$$
(3)
(3)

$$\delta \tilde{p} = \begin{cases} [(0.4)(0.3), (0.4)(0.4), (0.4)(0.5), (0.4)(0.6)]; \\ \sqrt{(1 - (1 - 0.7^{2})^{0.4}}, (0.5)^{0.4}], \\ [\sqrt{(1 - (1 - 0.2^{2})^{0.4}}, (0.2)^{0.4}], \\ [\sqrt{(1 - (1 - 0.2^{2})^{0.4}}, (0.2)^{0.4}]; \\ \end{bmatrix}$$
(4)

$$\tilde{p}^{\delta} = \begin{cases} [(0.3)^{0.4}, (0.4)^{0.4}, (0.5)^{0.4}, (0.6)^{0.4}]; \\ [,(0.7)^{0.4}\sqrt{(1 - (1 - 0.5^{2})^{0.4}}], \\ [,(0.2)^{0.4}\sqrt{(1 - (1 - 0.2^{2})^{0.4}}], \\ \end{bmatrix}; \\ [,(0.2)^{0.4}\sqrt{(1 - (1 - 0.2^{2})^{0.4}}] \end{cases}$$

 $= \big(\big[0.61, 0.69, 0.75, 0.85 \big]; \big[0.86, 0.32 \big], \big[0.52, 0.40 \big] \big).$

Definition 2.13: Let $\tilde{p} = ([p,q,r,s]; [\underline{\Psi}, \overline{\Psi}], [\underline{\Upsilon}, \overline{\Upsilon}])$ be an interval Pythagorean trapezoidal fuzzy numbers, a score function *S* can be defined as follows:

$$s(\tilde{p}) = \begin{pmatrix} \frac{p+q+r+s}{4} \\ \frac{\underline{\Psi}^2 - \underline{\Upsilon}^2 + \overline{\Psi}^2 - \overline{\Upsilon}^2}{2} \end{pmatrix}$$
(3)

Where $S(P) \in [-1,1]$

Example 2.14: Let $\tilde{p} = ([0.8, 0.6, 0.5, 0.7]; [0.7, 0.5], [0.8, 0.6])$ is Pythagorean trapezoidal fuzzy numbers, Then we verify the above results such that,

$$s(\tilde{p}) = \begin{pmatrix} \frac{0.8 + 0.6 + 0.5 + 0.7}{4} \\ \frac{0.7^2 - 0.8^2 + 0.5^2 - 0.1^2}{2} \\ = -0.0845 \end{pmatrix}$$

Definition 2.15: Let $\tilde{p} = ([p,q,r,s]; [\underline{\Psi}, \overline{\Psi}], [\underline{\Upsilon}, \overline{\Upsilon}])$ be an interval Pythagorean trapezoidal fuzzy numbers, an accuracy function *H* can be defined as follows:

$$H(\tilde{p}) = \begin{pmatrix} \frac{p+q+r+s}{4} \\ \frac{\Psi^2 + \underline{\Upsilon}^2 + \overline{\Psi}^2 + \overline{\Upsilon}^2}{2} \end{pmatrix} \quad H(\tilde{p}) \in [0,1]. \quad (4)$$

to determine the degree of an accuracy of the interval Pythagorean trapezoidal fuzzy numbers \tilde{p} , where $H(\tilde{p}) \in [0,1]$. The bigger the estimation of $H(\tilde{p})$ the further level of accuracy of the interval Pythagorean trapezoidal fuzzy numbers \tilde{p} .

Example 2.16: Let $\tilde{p} = ([0.8, 0.6, 0.5, 0.7]; [0.7, 0.5], [0.8, 0.6])$ is Pythagorean trapezoidal fuzzy numbers, Then we verify the above results such that,

$$H(\tilde{p}) = \begin{pmatrix} \frac{0.8 + 0.6 + 0.5 + 0.7}{4} \\ \frac{0.7^2 + 0.8^2 + 0.5^2 + 0.1^2}{2} \end{pmatrix}$$
$$= 0.56.$$

Theorem 2.17: Let $\tilde{p}_1 = ([p_1, q_1, r_1, s_1]; [\underline{\Psi}_1, \overline{\Psi}_1], [\underline{\Upsilon}_1, \overline{\tilde{\Gamma}}_1])$ and $\tilde{p}_2 = ([p_2, q_2, r_2, s_2]; [\underline{\Psi}_1, \overline{\Psi}_2], [\underline{\Upsilon}_2, \overline{\tilde{\Gamma}}_2])$ be two I - PTF numbers and $\delta, \delta_1, \delta_2$ are any scalar numbers. Then

(1)
$$\tilde{p}_1 \otimes \tilde{p}_2 = \tilde{p}_2 \otimes \tilde{p}_1;$$

(2) $(\tilde{p}_1 \otimes \tilde{p}_2)^{\delta} = \tilde{p}_2^{\delta} \otimes \tilde{p}_1^{\delta};$

143

(3)
$$\tilde{p}^{\delta_1} \otimes \tilde{p}^{\delta_2} = \tilde{p}^{(\delta_1 + \delta_2)}$$

Proof: (1) Proof is easy.

(2) Using definition 7 and operational law 2, we have

`

$$\tilde{p}_1 \otimes \tilde{p}_2 = \begin{pmatrix} [p_1 p_2, q_1 q_2, r_1 r_2, s_1 s_2]; \\ [\underline{\Psi}_1 \underline{\Psi}_2, \sqrt{\underline{\Upsilon}_1^2 + \underline{\Upsilon}_2^2 - (\underline{\Upsilon}_1 \underline{\Upsilon}_2)^2}] \\ , [\overline{\Psi}_1 \overline{\Psi}_2, \sqrt{\overline{\Upsilon}_1^2 + \overline{\Upsilon}_2^2 - (\overline{\Upsilon}_1 \overline{\Upsilon}_2)^2}] \end{pmatrix}$$

Then by operational law (4) in Definition (7), it follows that

$$(\tilde{p}_1 \otimes \tilde{p}_2)^{\delta} = \begin{pmatrix} \left[(p_1 p_2)^{\delta}, (q_1 q_2)^{\delta}, (r_1 r_2)^{\delta}, (s_1 s_2)^{\delta} \right]; \\ \left[(\underline{\Psi}_1 \underline{\Psi}_2)^{\delta}, \sqrt{1 - (1 - (\underline{\Upsilon}_1^2 + \underline{\Upsilon}_2^2 - (\underline{\Upsilon}_1 \underline{\Upsilon}_2)^2)^{\delta}} \right] \\ , \left[(\overline{\Psi}_1 \overline{\Psi}_2)^{\delta}, \sqrt{1 - (1 - (\overline{\Upsilon}_1^2 + \overline{\Upsilon}_2^2 - (\overline{\Upsilon}_1 \overline{\Upsilon}_2)^2)^{\delta}} \right] \end{pmatrix}$$

Also since

$$\begin{split} (\tilde{p}_1)^{\delta} &= \begin{pmatrix} \left[\left(p_1 \right)^{\delta}, \left(q_1 \right)^{\delta}, \left(r_1 \right)^{\delta}, \left(s_1 \right)^{\delta} \right]; \\ & \left[\left(\underline{\Psi}_{\tilde{\alpha}_1} \right)^{\delta}, \sqrt{\left(1 - \left(1 - \underline{\Upsilon}_{\tilde{\alpha}_1}^2 \right)^{\delta} \right]} \right] \\ , \left[\left(\overline{\Psi}_{\tilde{\alpha}_1} \right)^{\delta}, \sqrt{\left(1 - \left(1 - \overline{\Upsilon}_{\tilde{\alpha}_1}^2 \right)^{\delta} \right]} \right] \\ (\tilde{p}_2)^{\delta} &= \begin{pmatrix} \left[\left(p_2 \right)^{\delta}, \left(q_2 \right)^{\delta}, \left(r_2 \right)^{\delta}, \left(s_2 \right)^{\delta} \right]; \\ & \left[\left(\underline{\Psi}_{\tilde{\alpha}_2} \right)^{\delta}, \sqrt{\left(1 - \left(1 - \underline{\Upsilon}_{\tilde{\alpha}_2}^2 \right)^{\delta} \right]} \right] \\ , \left[\left(\overline{\Psi}_{\tilde{\alpha}_2} \right)^{\delta}, \sqrt{\left(1 - \left(1 - \overline{\Upsilon}_{\tilde{\alpha}_2}^2 \right)^{\delta} \right]} \right] \end{pmatrix}. \end{split}$$

Then, we have

$$\begin{split} &(\tilde{p}_{2})^{\delta} \otimes (\tilde{p}_{1})^{\delta} \\ = \begin{pmatrix} \left[\left(p_{1}p_{2} \right)^{\delta}, \left(q_{1}q_{2} \right)^{\delta}, \left(r_{1}r_{2} \right)^{\delta}, \left(s_{1}s_{2} \right)^{\delta} \right]; \\ &\left[\left(\underline{\Psi}_{\tilde{\alpha}_{1}} \underline{\Psi}_{\tilde{\alpha}_{2}} \right)^{\delta}, \sqrt{\frac{\left(1 - (1 - \underline{\Upsilon}_{\tilde{\alpha}_{1}})^{\delta} + (1 - (1 - \underline{\Upsilon}_{\tilde{\alpha}_{2}})^{\delta} - \right)}{(1 - (1 - \underline{\Upsilon}_{\tilde{\alpha}_{1}})^{\delta} (1 - (1 - \underline{\Upsilon}_{\tilde{\alpha}_{2}})^{\delta} - \right]} \right] \\ &\left[\left(\underline{\Psi}_{\tilde{\alpha}_{1}} \underline{\Psi}_{\tilde{\alpha}_{2}} \right)^{\delta}, \sqrt{\frac{\left(1 - (1 - \overline{\Upsilon}_{\tilde{\alpha}_{1}})^{\delta} + (1 - (1 - \overline{\Upsilon}_{\tilde{\alpha}_{2}})^{\delta} - \right)}{(1 - (1 - \overline{\Upsilon}_{\tilde{\alpha}_{1}})^{\delta} (1 - (1 - \overline{\Upsilon}_{\tilde{\alpha}_{2}})^{\delta} - \right]} \right] \end{split}$$

$$= \begin{pmatrix} \left[\left(p_1 p_2 \right)^{\delta}, \left(q_1 q_2 \right)^{\delta}, \left(r_1 r_2 \right)^{\delta}, \left(s_1 s_2 \right)^{\delta} \right]; \\ \left[\left(\underline{\Psi}_{\tilde{\alpha}_1} \underline{\Psi}_{\tilde{\alpha}_2} \right)^{\delta}, \sqrt{\left(1 - \left(1 - \underline{\Upsilon}_{\tilde{\alpha}_1}^2 + \underline{\Upsilon}_{\tilde{\alpha}_2}^2 - \underline{\Upsilon}_{\tilde{\alpha}_1}^2 \underline{\Upsilon}_{\tilde{\alpha}_2}^2 \right)^{\delta}} \right] \\ , \left[\left(\overline{\Psi}_{\tilde{\alpha}_1} \overline{\Psi}_{\tilde{\alpha}_2} \right)^{\delta}, \sqrt{\left(1 - \left(1 - \overline{\Upsilon}_{\tilde{\alpha}_1}^2 + \overline{\Upsilon}_{\tilde{\alpha}_2}^2 - \overline{\Upsilon}_{\tilde{\alpha}_1}^2 \overline{\Upsilon}_{\tilde{\alpha}_2}^2 \right)^{\delta}} \right] \end{pmatrix}$$

Hence, $(\tilde{p}_1 \otimes \tilde{p}_2)^o = \tilde{p}_2^o \otimes \tilde{p}_1^o$.

(3) By the operational law (4) in Definition (7), we obtain

$$(\tilde{p})^{\delta_1} = \begin{pmatrix} \left[\left(p \right)^{\delta_1}, \left(q \right)^{\delta_1}, \left(r \right)^{\delta_1}, \left(s \right)^{\delta_1} \right]; \\ \left[\left(\underline{\Psi}_{\tilde{\alpha}} \right)^{\delta_1}, \sqrt{\left(1 - \left(1 - \underline{\Upsilon}_{\tilde{\alpha}}^2 \right)^{\delta_1} \right]}, \\ \left[\left(\overline{\Psi}_{\tilde{\alpha}} \right)^{\delta_1}, \sqrt{\left(1 - \left(1 - \overline{\Upsilon}_{\tilde{\alpha}}^2 \right)^{\delta_1} \right]} \right] \end{pmatrix} \\ (\tilde{p})^{\delta_2} = \begin{pmatrix} \left[\left(p \right)^{\delta_2}, \left(q \right)^{\delta_2}, \left(r \right)^{\delta_2}, \left(s \right)^{\delta_2} \right]; \\ \left[\left(\underline{\Psi}_{\tilde{\alpha}} \right)^{\delta_2}, \sqrt{\left(1 - \left(1 - \underline{\Upsilon}_{\tilde{\alpha}}^2 \right)^{\delta_2} \right]}, \\ \left[\left(\overline{\Psi}_{\tilde{\alpha}} \right)^{\delta_2}, \sqrt{\left(1 - \left(1 - \overline{\Upsilon}_{\tilde{\alpha}}^2 \right)^{\delta_2} \right]} \right] \end{pmatrix} \end{pmatrix}$$

Then,

$$\begin{split} (\tilde{p})^{\delta_{1}} \otimes (\tilde{p})^{\delta_{2}} &= \begin{pmatrix} \left[p^{\delta_{1}} p^{\delta_{2}}, q^{\delta_{1}} q^{\delta_{2}}, r^{\delta_{1}} r^{\delta_{2}}, s^{\delta_{1}} s^{\delta_{2}} \right]; \\ (\tilde{p})^{\delta_{1}} \otimes (\tilde{p})^{\delta_{2}} &= \begin{pmatrix} \left[(\underline{\Psi}_{\tilde{a}})^{\delta_{1}} (\underline{\Psi}_{\tilde{a}})^{\delta_{2}}, \sqrt{(1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}}) + (1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{2}})} \right], \\ (\overline{\Psi}_{\tilde{a}})^{\delta_{1}} (\overline{\Psi}_{\tilde{a}})^{\delta_{2}}, \sqrt{(1-(1-\overline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}}) + (1-(1-\overline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{2}})} \\ &= \begin{pmatrix} \left[p^{\delta_{1}} p^{\delta_{2}}, q^{\delta_{1}} q^{\delta_{2}}, r^{\delta_{1}} r^{\delta_{2}}, s^{\delta_{1}} s^{\delta_{2}} \right]; \\ (\overline{\Psi}_{\tilde{a}})^{\delta_{1}} (\underline{\Psi}_{\tilde{a}})^{\delta_{2}}, \sqrt{(1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}}) (1-(\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{2}})} \\ &= \begin{pmatrix} \left[p^{\delta_{1}} p^{\delta_{2}}, q^{\delta_{1}} q^{\delta_{2}}, r^{\delta_{1}} r^{\delta_{2}}, s^{\delta_{1}} s^{\delta_{2}} \right]; \\ \left[(\overline{\Psi}_{\tilde{a}})^{\delta_{1}} (\overline{\Psi}_{\tilde{a}})^{\delta_{2}}, \sqrt{(1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}}) (1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{2}}} \right] \\ &= \begin{pmatrix} \left[p^{\delta_{1}+\delta_{2}}, q^{\delta_{1}+\delta_{2}}, r^{\delta_{1}+\delta_{2}}, s^{\delta_{1}+\delta_{2}} \right]; \\ \left[\underline{\Psi}_{\tilde{a}}^{\delta_{1}+\delta_{2}}, \sqrt{(1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}+\delta_{2}}} \right], \\ &= \begin{pmatrix} \left[p^{\delta_{1}+\delta_{2}}, \sqrt{(1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}+\delta_{2}}} \right] \\ \left[\underline{\Psi}_{\tilde{a}}^{\delta_{1}+\delta_{2}}, \sqrt{(1-(1-\underline{\Upsilon}_{\tilde{a}}^{2})^{\delta_{1}+\delta_{2}}} \right] \end{pmatrix} \\ &= (\tilde{p})^{\delta_{1}+\delta_{2}}. \end{split}$$

3. Induced averaging aggregation operators with Interval-valued Pythagorean trapezoidal fuzzy numbers

In this section, we introduce the notion of interval Pythagorean trapezoidal fuzzy weighted averaging (IPTFWA) operator, induced interval Pythagorean trapezoidal fuzzy ordered weighted averaging (I - IPTFOWA) operator, and interval Pythagorean trapezoidal fuzzy hybrid averaging (I - IPTFHA) operator. We also discuss several properties of these operators, including idem potency, bounded, and monotonicity as follows.

Definition 3.1: Let $\tilde{p}_{\pounds}(j = \pounds = 1, 2, ..., \Phi)$ be a group of *IPTF* numbers, let Ω be set of *IPTF* numbers, such that *IPTFWA*, $\Omega^{\Phi} \rightarrow \Omega$, if

$$IPTFWA\left(\tilde{p}_{1}, \tilde{p}_{2}, ..., \tilde{p}_{\Phi}\right) = \left(\hbar_{1}\tilde{p}_{1} \oplus \hbar_{2}\tilde{p}_{2} ... \oplus \hbar_{\Phi}\tilde{p}_{\Phi}\right).$$
(5)

Then, *IPTFWA* is said interval Pythagorean trapezoidal fuzzy weighted averaging operator of dimension Φ . Especially, if $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ having weight such that $\tilde{p}_{\pounds} (j = \pounds = 1, 2, ..., \Phi)$ with $\hbar_{\pounds} \in [0, 1]$ and $\sum_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1$, if $\hbar = (\frac{1}{\Phi}, \frac{1}{\Phi}, ..., \frac{1}{\Phi})^T$. Then *IPTFWA* operator is reduced to interval Pythagorean trapezoidal fuzzy averaging (*IPTFA*) operator of measurement Φ which is characterized as takes after :

$$IPTFA_{w}\left(\tilde{p}_{1},\tilde{p}_{2},...,\tilde{p}_{\Phi}\right) = \left(\tilde{p}_{1}\oplus\tilde{p}_{2}...\oplus\tilde{p}_{\Phi}\right)^{\frac{1}{\Phi}} \quad (6)$$

By Definition 12 and Theorem 1, we can acquire the accompanying outcome. In order to proof, we use mathematical induction.

Theorem 3.2: Consider $\tilde{p}_{\pounds}(j = \pounds = 1, 2, ..., \Phi)$ is the group of *IPTF* numbers. At that point, they collected an incentive by utilizing the *IPTFWA* administrator is an additionally *IPTF* number with the end goal that

$$IPTFWA(\tilde{p}_{1}, \tilde{p}_{2}, ..., \tilde{p}_{\Phi}) = \begin{pmatrix} \left[\sum_{\ell=1}^{\Phi} \hbar_{\ell} p_{\ell}, \sum_{\ell=1}^{\Phi} \hbar_{\ell} q_{\ell}, \sum_{\ell=1}^{\Phi} \hbar_{\ell} r_{\ell}, \sum_{\ell=1}^{\Phi} \hbar_{\ell} s_{\ell} \right]; \\ \left[\sqrt{1 - \prod_{\ell=1}^{\Phi} \left(1 - \underline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}}}, \sqrt{1 - \prod_{\ell=1}^{\Phi} \left(1 - \overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}}} \right], \\ \left[\left[\bigoplus_{\ell=1}^{\Phi} \underline{\Upsilon}_{\ell}^{h_{\ell}}, \bigoplus_{\ell=1}^{\Phi} \overline{\Upsilon}_{\ell}^{h_{\ell}} \right] \end{pmatrix} \end{pmatrix}$$
(7)

where $\hbar = \left(\frac{1}{\Phi}, \frac{1}{\Phi}, ..., \frac{1}{\Phi}\right)^T$ is the weight vector of $\tilde{p}_{\pounds} (\pounds = 1, 2, ..., \Phi)$ with $\hbar_{\pounds} \in [0, 1]$ and $\sum_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1$.

Proof: The result first is follows from Definition 12 and Theorem 1, by mathematical induction we prove the second result, we show that Eq. (7) satisfy the condition when $\Phi = 2$.

$$\begin{split} \hbar_{1}\tilde{p}_{1} = \begin{pmatrix} \left[\hbar_{1}p_{1},\hbar_{1}q_{1},\hbar_{1}\eta,\hbar_{1}s_{1}\right]; \\ \left[\sqrt{1-\prod_{\ell=1}^{\Phi}\left(1-\underline{\Psi}_{\tilde{\alpha}_{1}}^{2}\right)^{\hbar_{1}}},\sqrt{1-\prod_{\ell=1}^{\Phi}\left(1-\overline{\Psi}_{\tilde{\alpha}_{1}}^{2}\right)^{\hbar_{1}}}\right], \\ \left[\prod_{\ell=1}^{\Phi}\underline{\Upsilon}_{\tilde{\alpha}_{1}}^{h_{1}},\prod_{\ell=1}^{\Phi}\overline{\Upsilon}_{\tilde{\alpha}_{1}}^{h_{1}}\right] \end{pmatrix} \\ \hbar_{2}\tilde{p}_{2} = \begin{pmatrix} \left[\hbar_{2}p_{2},\hbar_{2}q_{2},\hbar_{2}r_{2},\hbar_{2}s_{2}\right]; \\ \left[\sqrt{1-\prod_{\ell=1}^{\Phi}\left(1-\underline{\Psi}_{\tilde{\alpha}_{2}}^{2}\right)^{\hbar_{2}}},\sqrt{1-\prod_{\ell=1}^{\Phi}\left(1-\overline{\Psi}_{\tilde{\alpha}_{2}}^{2}\right)^{\hbar_{2}}}\right], \\ \left[\prod_{\ell=1}^{\Phi}\underline{\Upsilon}_{\tilde{\alpha}_{2}}^{h_{2}},\prod_{\ell=1}^{\Phi}\overline{\Upsilon}_{\tilde{\alpha}_{2}}^{h_{2}}\right] \end{pmatrix} \end{split}$$

Then,

$$\begin{split} & IPTFWA(\tilde{p}_{1}, \tilde{p}_{2}) \\ &= \hbar_{1}\tilde{p}_{1} \oplus \hbar_{2}\tilde{p}_{2} \\ &= \left[\begin{bmatrix} \hbar_{1}p_{1}\hbar_{2}p_{2}, \hbar_{1}q_{1}\hbar_{2}q_{2}, \hbar_{1}\eta\hbar_{2}r_{2}, \hbar_{1}s_{1}\hbar_{2}s_{2} \end{bmatrix}; \\ &= \begin{bmatrix} \left[\hbar_{1}p_{1}\hbar_{2}p_{2}, \hbar_{1}q_{1}\hbar_{2}q_{2}, \hbar_{1}\eta\hbar_{2}r_{2}, \hbar_{1}s_{1}\hbar_{2}s_{2} \right]; \\ &\left[\sqrt{1 - \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{1}}\right)^{\hbar_{1}} + 1 - \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{2}}\right)^{\hbar_{2}}}, \left(\frac{\Gamma^{\hbar_{1}}}{\tilde{\alpha}_{1}}\right)\left(\frac{\Gamma^{\hbar_{2}}}{\tilde{\alpha}_{2}}\right) \end{bmatrix} \\ &\cdot \left[\sqrt{1 - \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{1}}\right)^{\hbar_{1}} + 1 - \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{2}}\right)^{\hbar_{2}}}, \left(\frac{\Gamma^{\hbar_{1}}}{\tilde{\alpha}_{1}}\right)\left(\frac{\Gamma^{\hbar_{2}}}{\tilde{\alpha}_{2}}\right) \end{bmatrix} \\ &= \begin{bmatrix} \left[\hbar_{1}p_{1}\hbar_{2}p_{2}, \hbar_{1}q_{1}\hbar_{2}q_{2}, \hbar_{1}\eta\hbar_{2}r_{2}, \hbar_{1}s_{1}\hbar_{2}s_{2} \right]; \\ &\left[\sqrt{1 - \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{1}}\right)^{\hbar_{1}} \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{2}}\right)^{\hbar_{2}}}, \left(\frac{\Gamma^{\hbar_{1}}}{\tilde{\alpha}_{1}}\right)\left(\frac{\Gamma^{\hbar_{2}}}{\tilde{\alpha}_{2}}\right) \end{bmatrix} \\ &\cdot \left[\sqrt{1 - \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{1}}\right)^{\hbar_{1}} \left(1 - \frac{\Psi^{2}}{\tilde{\alpha}_{2}}\right)^{\hbar_{2}}}, \left(\frac{\Gamma^{\hbar_{1}}}{\tilde{\alpha}_{1}}\right)\left(\frac{\Gamma^{\hbar_{2}}}{\tilde{\alpha}_{2}}\right) \end{bmatrix} \right]. \end{split}$$

If Eq. (7) holds for $\Phi = k$, that is

$$\begin{split} & IPTFWA_{w}\left(\tilde{p}_{1},\tilde{p}_{2},...,\tilde{p}_{k}\right) \\ &= \begin{pmatrix} \left[\sum_{\substack{\ell=1\\ \ell=1}^{k}\hbar_{\pounds}p_{\pounds},\sum_{\substack{\ell=1\\ \ell=1}}^{k}\hbar_{\ell}q_{\pounds},\sum_{\substack{\ell=1\\ \ell=1}}^{k}\hbar_{\ell}r_{\pounds},\sum_{\substack{\ell=1\\ \ell=1}}^{k}\hbar_{\ell}s_{\pounds}\right]; \\ & \left[\sqrt{1-\prod_{\substack{\ell=1\\ \ell=1}}^{\Phi}\left(1-\underline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{\hbar_{\ell}}},\sqrt{1-\prod_{\substack{\ell=1\\ \ell=1}}^{\Phi}\left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{\hbar_{\ell}}}\right] \\ & \quad , \left[\prod_{\substack{\ell=1\\ \ell=1}}^{\Phi}\underline{\Upsilon}_{\ell}^{\hbar_{\ell}},\prod_{\substack{\ell=1\\ \ell=1}}^{\Phi}\overline{\Upsilon}_{\ell}^{\hbar_{\ell}}\right] \end{pmatrix} \end{split}$$

Then, if $\Phi = k + 1$, by operational laws in Definition 7, we have)

 $\tilde{p}_1 = ([0.3, 0.4, 0.5, 0.6]; [0.7, 0.4], [0.8, 0.3]),$ $\tilde{p}_2 = ([0.4, 0.5, 0.6, 0.4]; [0.9, 0.2], [0.8, 0.6]),$ $\tilde{p}_3 = ([0.5, 0.4, 0.6, 0.9]; [0.7, 0.6], [0.6, 0.4]),$ $\tilde{p}_4 = ([0.4, 0.3, 0.2, 0.1]; [0.5, 0.6], [0.7, 0.5]),$ $\tilde{p}_5 = ([0.5, 0.6, 0.4, 0.3]; [0.8, 0.3], [0.6, 0.5])$

$$IPTFWA_w(\tilde{p}_1, \tilde{p}_2, ..., \tilde{p}_{k+1})$$

$$= \begin{pmatrix} \begin{bmatrix} k+1 & k+1 & k+1 & k+1 & k+1 & k+1 \\ \sum_{\ell=1}^{k} h_{\ell} p_{\ell}, \sum_{\ell=1}^{k} h_{\ell} q_{\ell}, \sum_{\ell=1}^{k+1} h_{\ell} r_{\ell}, \sum_{\ell=1}^{k+1} h_{\ell} s_{\ell} \end{bmatrix}; \\ = \begin{bmatrix} \begin{bmatrix} 1-\prod_{\ell=1}^{k} \left(1-\underline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} + 1-\left(1-\underline{\Psi}_{\tilde{\alpha}_{k+1}}^{2}\right)^{h_{k+1}} - & \\ 1-\prod_{\ell=1}^{k} \left(1-\underline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} (1-\left(1-\underline{\Psi}_{\tilde{\alpha}_{k+1}}^{2}\right)^{h_{k+1}} - & \\ 1-\prod_{\ell=1}^{k} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} + 1-\left(1-\overline{\Psi}_{\tilde{\alpha}_{k+1}}^{2}\right)^{h_{k+1}} - & \\ 1-\prod_{\ell=1}^{k} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} (1-\left(1-\overline{\Psi}_{\tilde{\alpha}_{k+1}}^{2}\right)^{h_{k+1}} - & \\ 1-\prod_{\ell=1}^{k} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} (1-\left(1-\overline{\Psi}_{\tilde{\alpha}_{k+1}}^{2}\right)^{h_{k+1}} - & \\ 1-\prod_{\ell=1}^{k} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} (1-\left(1-\overline{\Psi}_{\tilde{\alpha}_{k+1}}^{2}\right)^{h_{k+1}} - & \\ 1-\prod_{\ell=1}^{k} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} (1-\left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{k+1}} + & \\ 1-\prod_{\ell=1}^{k} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} , & \\ 1-\prod_{\ell=1}^{k+1} h_{\ell} p_{\ell} , & \\ \sum_{\ell=1}^{k+1} h_{\ell} q_{\ell} , & \\ \sum_{\ell=1}^{k+1} h_{\ell} r_{\ell} , & \\ 1-\prod_{\ell=1}^{k-1} \left(1-\underline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} , & \\ 1-\prod_{\ell=1}^{k-1} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} , & \\ 1-\prod_{\ell=1}^{k+1} \left(1-\overline{\Psi}_{\tilde{\alpha}_{\ell}}^{2}\right)^{h_{\ell}} , & \\ 1-\prod_{\ell=$$

Therefore Eq. (7) hold for $\Phi = k+1$. Hence Eq. (7) hold $\forall \Phi$. To study some properties of (*IPTFWA*) of operator, we have following Theorem.

Example 3.3: Let

be five interval Pythagorean trapezoidal fuzzy numbers, $\hbar = (0.10, 0.20, 0.30, 0.15, 0.25)$ be weighted and let vector of $\tilde{p}_f(f = 1, 2, 3, 4, 5)$. By using Eq. (7), such that

After simplify the above result we have interval Pythagorean trapezoidal fuzzy numbers such that ([0.44, 0.45, 0.48, 0.5]; [0.77, 0.48], [0.66, 0.46]).

Theorem 3.4: Let $\tilde{p}_{f}(j=f=1,2,...,\Phi)$ be a collection of *IPTF* numbers, and $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ be the weight vector of $\tilde{p}_f(\mathfrak{t}=1,2,...,\Phi)$, with $\hbar_f \in [0,1]$ and

 $\sum_{f=1}^{\Phi} \hbar_f = 1$. Then, we have following properties; (1) (Idempotent): If all $\tilde{p}_{f}(f=1,2,...,\Phi)$ are equal,

$$IPTFWA_{w}(\tilde{p}_{1}, \tilde{p}_{2}, ..., \tilde{p}_{\Phi}) = \tilde{p}.$$
(8)

such that $\tilde{p}_{\pounds} = \tilde{p} \, \forall \pounds$, then

(2) (Bounded): $\tilde{p}^- \leq IPTFWA(\tilde{p}_1, \tilde{p}_2, ..., \tilde{p}_{\Phi}) \leq \tilde{p}^+$ for all where $\tilde{p}^- = \min_f (\tilde{p}_f)$ and $\tilde{p}^+ = \max_f (\tilde{p}_f)$.

(3) (Monotonicity): Let $\tilde{p}_{\ell}^{*}(\ell = 1, 2, ..., \Phi)$ be a collection of I - PTF numbers. If $\tilde{p}_v \leq \tilde{p}_{\pounds}^* \forall \pounds$.

Then,

 \hbar_f

$$IPTFWA_{w}\left(\tilde{p}_{1}, \tilde{p}_{2}, ..., \tilde{p}_{\Phi}\right) \leq IPTFWA_{w}\left(\tilde{p}_{1}^{*}, \tilde{p}_{2}^{*}, ..., \tilde{p}_{\Phi}^{*}\right) \forall w.$$
(9)

Definition 3.5: Consider $\tilde{p}_{f}(j = f = 1, 2, ..., \Phi)$ is the group of I - IPTF numbers. An induced interval Pythagorean trapezoidal fuzzy ordered weighted averaging (I - IPTFOWA) operator of measurement n is a mapping and let I - IPTFOWA : $\Omega^{\Phi} - > \Omega$ having weight vector $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ such that

$$\in [0,1] \text{ and } \Sigma_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1 .$$

$$I - IPTFOWA(\langle u_{1}, \tilde{p}_{1} \rangle, \langle u_{2}, \tilde{p}_{2} \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle)$$

$$= \hbar_{1} \tilde{p}_{\sigma_{(1)}} \oplus \hbar_{2} \tilde{p}_{\sigma_{(2)}} ... \oplus \hbar_{\Phi} \tilde{p}_{\sigma_{(\Phi)}}$$

$$(10)$$

Where $(\sigma(1), \sigma(2), ..., \sigma(\Phi))$ is a permutation of $(1,2,...,\Phi)$ such that $\tilde{p}_{\sigma(\pounds-1)} \ge \tilde{p}_{\sigma(\pounds)}$ for all \pounds , if $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$, then I - IPTFOWA operator is reduced to be I - IPTFA operator of dimension Φ .

Theorem 3.6: Let $\tilde{p}_{\pounds}(\pounds = 1, 2, ..., \Phi)$ be a collection of I - IPTF numbers, at that point their collected an incentive by utilizing the I - IPTFOWA administrator is likewise I - IPTF number and

$$I - IPTFOWA(\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle)$$

where $\hbar = \left(\frac{1}{\Phi}, \frac{1}{\Phi}, ..., \frac{1}{\Phi}\right)^T$ having weight of $\tilde{p}_{\pounds} \left(j = \pounds = 1, 2..., \Phi\right)$ with $\hbar_{\pounds} \in [0, 1]$ and $\sum_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1$.

$$\begin{split} &\langle u_1, \tilde{p}_1 \rangle = \langle 0.3, ([0.3, 0.4, 0.5, 0.6]; [0.8, 0.4], [0.6, 0.3]) \rangle, \\ &\langle u_2, \tilde{p}_2 \rangle = \langle 0.2, ([0.4, 0.5, 0.6, 0.4]; [0.9, 0.4], [0.8, 0.3]) \rangle, \\ &\langle u_3, \tilde{p}_3 \rangle = \langle 0.5, ([0.6, 0.5, 0.4, 0.8]; [0.7, 0.6], [0.6, 0.4]) \rangle, \\ &\langle u_4, \tilde{p}_4 \rangle = \langle 0.1, ([0.4, 0.3, 0.2, 0.1]; [0.6, 0.6], [0.6, 0.5]) \rangle, \\ &\langle u_5, \tilde{p}_5 \rangle = \langle 0.7, ([0.6, 0.4, 0.2, 0.1]; [0.8, 0.5], [0.6, 0.5]) \rangle. \end{split}$$

be five induced interval Pythagorean trapezoidal fuzzy numbers, and let $\hbar = (0.15, 0.25, 0.10, 0.20, 0.30)$ be weighted vector of $\tilde{p}_{\pounds}(\pounds = 1, 2, 3, 4, 5)$. We write an ordering form with the help of first component such that

$$\begin{split} &\langle u_5, \tilde{p}_5 \rangle = \left\langle 0.7, \left([0.6, 0.4, 0.2, 0.1]; [0.8, 0.5], [0.6, 0.5] \right) \right\rangle \\ &\langle u_3, \tilde{p}_3 \rangle = \left\langle 0.5, \left([0.6, 0.5, 0.4, 0.8]; [0.7, 0.6], [0.6, 0.4] \right) \right\rangle, \\ &\langle u_1, \tilde{p}_1 \rangle = \left\langle 0.3, \left([0.3, 0.4, 0.5, 0.6]; [0.8, 0.4], [0.6, 0.3] \right) \right\rangle, \\ &\langle u_2, \tilde{p}_2 \rangle = \left\langle 0.2, \left([0.4, 0.5, 0.6, 0.4]; [0.9, 0.4], [0.8, 0.3] \right) \right\rangle, \\ &\langle u_4, \tilde{p}_4 \rangle = \left\langle 0.1, \left([0.4, 0.3, 0.2, 0.1]; [0.6, 0.6], [0.6, 0.5] \right) \right\rangle \end{split}$$

The ordering includes the ordered Pythagorean trapezoidal fuzzy arguments.

$$\begin{split} \widetilde{p}_{\sigma(1)} &= \left< 0.7, ([0.6, 0.4, 0.2, 0.1]; [0.8, 0.5], [0.6, 0.5]) \right> \\ \widetilde{p}_{\sigma(2)} &= \left< 0.5, ([0.6, 0.5, 0.4, 0.8]; [0.7, 0.6], [0.6, 0.4]) \right>, \\ \widetilde{p}_{\sigma(3)} &= \left< 0.3, ([0.3, 0.4, 0.5, 0.6]; [0.8, 0.4], [0.6, 0.3]) \right>, \\ \widetilde{p}_{\sigma(4)} &= \left< 0.2, ([0.4, 0.5, 0.6, 0.4]; [0.9, 0.4], [0.8, 0.3]) \right>, \\ \widetilde{p}_{\sigma(5)} &= \left< 0.1, ([0.4, 0.3, 0.2, 0.1]; [0.6, 0.6], [0.6, 0.5]) \right> \end{split}$$

By using Eq. (11) we have,

$$\left(\begin{array}{c} I - IPTFOWA(\langle u_1, \tilde{p}_1 \rangle \langle u_2, \tilde{p}_2 \rangle, \langle u_3, \tilde{p}_3 \rangle, \langle u_4, \tilde{p}_4 \rangle, \langle u_5, \tilde{p}_5 \rangle,) = \\ 0.15(0.6) + 0.25(0.6) + 0.10(0.3) + 0.20(0.4) + 0.30(0.4), \\ 0.15(0.4) + 0.25(0.5) + 0.10(0.4) + 0.20(0.5) + 0.30(0.3), \\ 0.15(0.2) + 0.25(0.4) + 0.10(0.5) + 0.20(0.6) + 0.30(0.2), \\ 0.15(0.1) + 0.25(0.8) + 0.10(0.6) + 0.20(0.4) + 0.30(0.1), \\ \end{array} \right]$$

After simplify the above result we have induced interval Pythagorean trapezoidal fuzzy numbers such that ([0.39, 0.41, 0.36, 0.32]; [0.77, 0.55], [0.63, 0.40]).

Theorem 3.8: Consider $\tilde{p}_{\pounds} (j = \pounds = 1, 2, ..., \Phi)$ is a group of I - IPTF numbers, and $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ is the weight vector of $\tilde{p}_{\pounds} = (\pounds = 1, 2, ..., \Phi)$, with $\hbar_{\pounds} \in [0, 1]$ and $\sum_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1$. Then, we have following.

(1) (Idempotent): If all $\tilde{p}_{\pounds}(j = \pounds = 1, 2, ..., \Phi)$ are equal, such that, $\tilde{p}_{\pounds} = \tilde{p} \forall \pounds$, then

$$I - IPTFOWA_{w}(\langle u_{1}, \tilde{p}_{1} \rangle, \langle u_{2}, \tilde{p}_{2} \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle) = \tilde{p}.$$
(12)

(2) (Boundary):

$$\tilde{p}^{-} \leq I - IPTFOWA(\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle) \leq \tilde{p}^{+}$$

for all \hbar , where $\tilde{p}^- = \min_{\ell} (\tilde{p}_{\ell})$ and $\tilde{p}^+ = \max_{\ell} (\tilde{p}_{\ell})$.

(3) (Monotonicity):

Definition 3.9: Consider
$$\tilde{p}_{\pounds}^{*}(\pounds = 1, 2, ..., \Phi)$$
 is the group
of $I - IPTF$ numbers. If $\tilde{p}_{\pounds} \leq \tilde{p}_{\pounds}^{*} \forall \pounds$, then
 $I - IPTFOWA_{w}(\langle u_{1}, \tilde{p}_{1} \rangle, \langle u_{2}, \tilde{p}_{2} \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle)$
 $\leq I - IPTFOWA_{w}(\langle u_{1}, \tilde{p}_{1}^{*} \rangle, \langle u_{2}, \tilde{p}_{2}^{*} \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi}^{*} \rangle) \forall \hbar.$
(13)

Theorem 3.10: Let $\tilde{p}_{\pounds} (j = \pounds = 1, 2, ..., \Phi)$ be a gathering of I - IPTF numbers, and $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ be the weight vector of I - IPTFOWA operator, with $\hbar_{\pounds} \in [0, 1]$ and $\sum_{f=1}^{\Phi} \hbar_{\pounds} = 1$, hence we have

(1) If
$$\hbar = (1, 0, ..., 0)^T$$
, then
 $I - IPTFOWA_w (\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle) = \max_{\pounds} (\tilde{p}_{\pounds}).$
(2) If $\hbar = (0, 0, ..., 1)^T$, then
 $I - IPTFOWA_w (\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle) = \min_{\pounds} (\tilde{p}_{\pounds}).$
(3) If $\hbar = 1, w_i = 0$, and $i \neq \pounds$ then
 $I - IPTFOWA_w (\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle) = \tilde{p}_{\sigma(\pounds)},$
Where $\tilde{p}_{\sigma(\pounds)}$ is the jth largest of $\tilde{p}_i (i = 1, 2, ..., \Phi).$

We shall define Induced interval Pythagorean trapezoidal fuzzy hybrid averaging (I - IPTFHA) operator in the resulting:

Theorem 3.11: Let $\tilde{p}_{\pounds}(j = \pounds = 1, 2, ..., \Phi)$ be a collection of I - IPTF numbers. An induced Interval Pythagorean trapezoidal fuzzy hybrid averaging (I - IPTFHA)administrator of measurement n is a mapping (I - IPTFHA): $\Omega^{\Phi} - > \Omega$ and $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ having weight

$$\tilde{p}_{\pounds} \left(j = \pounds = 1, 2, ..., \Phi \right) \text{, with } \hbar_{\pounds} \in [0, 1] \text{ and } \Sigma_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1.$$

$$I - IPTFHA_{w,w} \left(\langle u_{1}, \tilde{p}_{1} \rangle, \langle u_{2}, \tilde{p}_{2} \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle \right)$$

$$= \hbar_{1} \dot{\tilde{p}}_{\sigma(1)} \oplus \hbar_{1} \dot{\tilde{p}}_{\sigma(2)} ... \oplus \hbar_{1} \dot{\tilde{p}}_{\sigma(\Phi)} \tag{14}$$

where $\tilde{p}_{\sigma_{(f)}}$ is the *£th* largest of the weighted

$$I - PTF$$
 numbers $\tilde{\tilde{p}}_{\pounds} \left(\tilde{\tilde{p}}_{\pounds} = \Phi \hbar_{\pounds} \tilde{\tilde{p}}_{\pounds} \right)$, and

 $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ be the weight vector of \tilde{p}_{\pounds} operator, with $\hbar_{\pounds} \in [0,1]$ and $\sum_{\pounds=1}^{\Phi} \hbar_{\pounds} = 1$. Where *n* is the balancing coefficient, which demonstrates a character of unfaltering quality in such a case, if the vector

$$\begin{split} &\hbar = \left(\hbar_1, \hbar_2, ..., \hbar_{\Phi}\right)^T \text{ approaches} \left(\frac{1}{\Phi}, \frac{1}{\Phi}, ..., \frac{1}{\Phi}\right)^T, \text{ then the} \\ &\text{vector} \qquad \left(\Phi w_1 \tilde{p}_1, \Phi w_2 \tilde{p}_2, ..., \Phi w_{\Phi} \tilde{p}_{\Phi}\right)^T \quad \text{ approaches} \\ &\left(\tilde{p}_1, \tilde{p}_2, ..., \tilde{p}_{\Phi}\right)^T. \end{split}$$

Theorem 3.12: Let $\tilde{p}_{\pounds}(j = \pounds = 1, 2, ..., \Phi)$ be a collection of I - PTF numbers, then their aggregated value by using the (I - PTFHA) operator is also I - PTF number and

$$I - PTFHA_{w,w}\left(\langle u_{1}, \tilde{p}_{1} \rangle, \langle u_{2}, \tilde{p}_{2} \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle\right)$$

$$= \begin{pmatrix} \left[\sum_{\ell=1}^{\Phi} \hbar_{\ell} \tilde{p}_{\sigma(\ell)}, \sum_{\ell=1}^{\Phi} \hbar_{\ell} \tilde{q}_{\sigma(\ell)}, \sum_{\ell=1}^{\Phi} \hbar_{\ell} \tilde{r}_{\sigma(\ell)}, \sum_{\ell=1}^{\Phi} \hbar_{\ell} \tilde{s}_{\sigma(\ell)} \right]; \\ \left[\sqrt{1 - \prod_{\ell=1}^{\Phi} \left(1 - \frac{\dot{\nu}}{\Phi}_{\sigma(\ell)}\right)^{\hbar_{\ell}}}, \sqrt{1 - \prod_{\ell=1}^{\Phi} \left(1 - \frac{\dot{\nu}}{\Phi}_{\sigma(\ell)}\right)^{\hbar_{\ell}}} \right], \\ \left[\sum_{\ell=1}^{\Phi} \sum_{\ell=1}^{h_{\ell}} \tilde{r}_{\sigma(\ell)}, \prod_{\ell=1}^{\Phi} \tilde{r}_{\sigma(\ell)}^{\hbar_{\ell}} \right] \end{pmatrix}.$$
(15)

Theorem 3.13: The *IPTFWA* administrator is an alternate instance of the I - IPTFHA administrator.

Proof: Let
$$\hbar = \left(\frac{1}{\Phi}, \frac{1}{\Phi}, ..., \frac{1}{\Phi}\right)^T$$
, then
148

$$\begin{split} &I - IPTFHA_{w,w} \left(\left\langle u_{1}, \tilde{p}_{1} \right\rangle, \left\langle u_{2}, \tilde{p}_{2} \right\rangle, ..., \left\langle u_{\Phi}, \tilde{p}_{\Phi} \right\rangle \right) \\ &= \left(\hbar_{1} \stackrel{\cdot}{\tilde{p}}_{\sigma_{(1)}} \oplus \hbar_{2} \stackrel{\cdot}{\tilde{p}}_{\sigma_{(2)}} \dots \oplus \hbar_{\Phi} \stackrel{\cdot}{\tilde{p}}_{\sigma_{(\Phi)}} \right) \\ &= \left(\frac{1}{\Phi} \stackrel{\cdot}{\tilde{p}}_{\sigma_{(1)}} \oplus \frac{1}{\Phi} \stackrel{\cdot}{\tilde{p}}_{\sigma_{(2)}} \dots \oplus \frac{1}{\Phi} \stackrel{\cdot}{\tilde{p}}_{\sigma_{(\Phi)}} \right) \\ &= \left(\hbar_{1} \tilde{p} \oplus \hbar_{2} \tilde{p} \dots \oplus \hbar_{\Phi} \tilde{p} \right) \\ &= IPTFWA_{w} \left(\tilde{p}_{1}, \tilde{p}_{2}, ..., \tilde{p}_{\Phi} \right). \end{split}$$

Theorem 3.14: The I - IPTFOWA operator is a different case of the I - IPTFHA operator.

Proof: Let $\hbar = \left(\frac{1}{\Phi}, \frac{1}{\Phi}, ..., \frac{1}{\Phi}\right)^T$, then

$$\begin{pmatrix} \dot{\tilde{p}}_{\pm} = \tilde{p}_{\pm}, \pm = 1, 2, ..., \Phi \end{pmatrix}, \text{ hence}$$

$$I - IPTFHA_{w,w} \left(\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle \right)$$

$$= \left(\hbar_1 \dot{\tilde{p}}_{\sigma_{(1)}} \oplus \hbar_2 \dot{\tilde{p}}_{\sigma_{(2)}} ... \oplus \hbar_{\Phi} \tilde{p}_{\sigma_{(\Phi)}} \right)$$

$$= \left(\hbar_1 \tilde{p}_{\sigma_{(1)}} \oplus \hbar_2 \tilde{p}_{\sigma_{(2)}} ... \oplus \hbar_{\Phi} \tilde{p}_{\sigma_{(\Phi)}} \right)$$

$$= I - IPTFOWA_w$$

$$= \left(\langle u_1, \tilde{p}_1 \rangle, \langle u_2, \tilde{p}_2 \rangle, ..., \langle u_{\Phi}, \tilde{p}_{\Phi} \rangle \right).$$

4. An Application of Interval Pythagorean Trapezoidal Fuzzy Numbers with MAGDM Problems

To solve the *MAGDM* problem we use I - IPTFOWA as well as I - IPTFHA operators with interval Pythagorean trapezoidal fuzzy information.

Let $B = \{B_1, B_2, ..., B_m\}$ be set a of alternatives and the weighting vector of the attribute $C = \{C_1, C_2, ..., C_n\}$ is, $P = \{P_1, P_2, ..., P_n\}$, where sum of p_{\pounds} is equal to one such that $\sum_{\ell=1}^{\Phi} P_{\pounds} = 1$. Let the set of decision makers is denoted by $Q = \{Q_1, Q_2, ..., Q_t\}$ whose weighting vector is $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$ such that, $\hbar_k \in [0, 1]$ and $\sum_{k=1}^t \hbar_k = 1$. Consider that

$$\tilde{Z}^{k} = \left(\tilde{z}_{i\ell}^{k}\right)_{m \times n} = \left[p_{i\ell}^{k}, q_{i\ell}^{k}, r_{i\ell}^{k}, s_{i\ell}^{k}\right]; \left[\Psi_{i\ell}^{k}, \bar{\Psi}_{i\ell}^{k}\right], \left[\Upsilon_{i\ell}^{k}, \bar{\Upsilon}_{i\ell}^{k}\right])_{m \times n} \quad (16)$$

is the interval Pythagorean trapezoidal fuzzy decision matrix,

$$\begin{split} & [\Psi_{i\ell}^{k}, \bar{\Psi}_{i\ell}^{k}] \subset [0,1], \text{and } [\Upsilon_{i\ell}^{k}, \bar{\Upsilon}_{i\ell}^{k}] \subset [0,1] \Psi_{i\ell}^{2k} + \bar{\Psi}_{i\ell}^{2k} \leq 1 \text{ and } \Upsilon_{i\ell}^{2k} + \bar{\Upsilon}_{i\ell}^{2k} \leq 1 \\ & (\pounds = 1, 2, ..., \Phi, i = 1, 2, ..., m, k = 1, 2, ..., t). \end{split}$$

Fig. 1: Flow chart of proposed algorithm

In the following steps we solve *MAGDM* problems by applying *IPTF* information:

Step 1: In this step we construct interval Pythagorean trapezoidal fuzzy decision matrix from Table 1-4.

Step 2: In this step we construct interval Pythagorean trapezoidal fuzzy ordered decision matrix from Table 1-4.

Step 3: Aggregate all the preference values by applying I - IPTFOWA operator and get overall preference values.

Step 4: Applying the known weight by using operational law 3 in definition 7 to find overall preference interval Pythagorean trapezoidal fuzzy values (\tilde{z}_i^k) of the alternative B_i .

$$(\tilde{z}_i) = ([p_i, q_i, r_i, s_i]; [\Psi_i, \bar{\Psi}_i], [\Upsilon_i, \bar{\Upsilon}_i])$$

= $I - IPTFHA_{w,w}(z_{if}^1, z_{if}^2, ..., z_{if}^t),$ (17)

Step 5: Applying the (I - IPTFHA) operator to stem the communal whole partiality *IPTF* values $\tilde{z}_i (i = 1, 2, ..., m)$ of the alternative B_i ; where $\hbar = (\hbar_1, \hbar_2, ..., \hbar_{\Phi})^T$) be the weight vector of decision makers. With $\hbar_k \in [0,1]$ and $\Sigma_{k=1}^t \hbar_k = 1$; $\Gamma = (\Gamma_1, \Gamma_2, ..., \Gamma_t)^T$ is the associated weight vector of the (I - IPTFHA) operator, with $\Gamma_k \in [0,1]$ and $\Sigma_{k=1}^t \Gamma_k = 1$.

Step 6: In this step we use score function to aggregate value of each alternative.

Step 7: In this step we determine the rank of alternative B_i and select the best option according to descending order.

5. Numerical Example

International ecological disquiet is a certainty, and deliberation on the black fabrication in several industries. A car company wanted to choose the most suitable black supplier having the key factor in its industrial process. pre-evaluation, Subsequently four suppliers Bi(i = 1, 2, 3, 4) have persisted as alternatives for further evaluation. There are four criteria to be supposed such that: C_1 creation worth; C_2 equipment competence; C_3 contamination control; C_4 atmosphere supervision (having weight $\hbar = (0.4, 0.3, 0.2, 0.1)^T$. The company arranged four group *DMS* form four fidelity branches; q_1 is from the engineering branch; q_2 is from the acquiring branch; q_3 is from the quality assessment branch; q_4 is from the fabrication branch; (having weight $w = (0.20, 0.30, 0.35, 0.15)^T$. They constructed the decision matrix $Z^{(k)} = \left(z_{ij}^{(k)}\right)_{A \times A}$

(*k* = 1, 2, 3, 4) as follows:

Step 1: The decision makers give his decision in the following tables.

Table 1: Decision matrix of Expert 1	
<0.2,([0.4,0.5,0.2,0.3];[0.6,0.5],[0.4,0.7])> <0.5,([0.7,0.5,0.6,0.3];[0.4,0.7])>).6],[0.5,0.6])>
<0.4,([0.4,0.5,0.7,0.2];[0.6,0.7],[0.7,0.6])> <0.5,([0.3,0.1,0.2,0.4];[0.3,0.1,0.2];[0.3,0.1,0.2,0.2];[0.3,0.1,0.2];[0.3,0.1,0.2];[0.3,0.2,0.2];[0.3,0.2];[0.3,0.2,0.2];[0.3,0.2]).8],[0.6,0.5])>
<0.2,([0.6,0.8,0.9,0.2];[0.3,0.9],[0.8,0.4])> <0.6,([0.2,0.1,0.3,0.5];[0.6,0.4])>	0.5],[0.3,0.8])>
Z ⁽¹⁾ <0.3,([0.4,0.5,0.4,0.3];[0.5,0.5],[0.8,0.6])> <0.5,([0.4,0.3,0.4,0.2];[0.3,0.4];[0.3,0.4,0.2];[0.3,0.4,0.4];[0.3,0.4,0.4];[0.3,0.4,0.4];[0.3,0.4,0.4];[0.3,0.4];[0.	0.8],[0.6,0.5])>
<	0.6],[0.4,0.7])>
<0.7,([0.4,0.3,0.6,0.3];[0.4,0.6],[0.6,0.5])> <0.1,([0.4,0.3,0.2,0.1];[0.4,0.6])	0.6],[0.7,0.5])>
<0.3,([0.3,0.1,0.2,0.3];[0.3,0.8],[0.8,0.6])> <0.8,([0.5,0.3,0.6,0.4];[0.5,0.3,0.6];[0.5,0.	0.7],[0.8,0.5])>
<0.4,([0.4,0.3,0.4,0.6];[0.4,0.7],[0.6,0.4])> <0.9,([0.9,0.6,0.4,0.1];[0.3,0.4,0.1])).8],[0.6,0.5])>
Table 2: Decision matrix of Expert 2	
<0.4,([0.3,0.4,0.5,0.6];[0.4,0.8],[0.8,0.5])> <0.6,([0.4,0.3,0.6,0.7];[0.4,0.8,0.5])>	.6],[0.6,0.6])>
<0.9,([0.3,0.4,0.4,0.6];[0.3,0.7],[0.8,0.3])> <0.2,([0.4,0.5,0.3,0.1];[0.3,0.4,0.4,0.6])	.9],[0.8,0.3])>
<0.5,([0.3,0.4,0.5,0.6];[0.5,0.5],[0.6,0.7])> <0.6,([0.4,0.5,0.7,0.8];[0.6,0.7])>	.7],[0.4,0.7])>
$7^{(2)} = \langle 0.2, ([0.4, 0.3, 0.1, 0.3]; [0.8, 0.6], [0.4, 0.6]) \rangle \\ \langle 0.5, ([0.3, 0.4, 0.5, 0.7]; [0.7, 0.6], [0.4, 0.6] \rangle \rangle $.6],[0.5,0.8])>
2 <0.3,([0.8,0.2,0.3,0.4];[0.5,0.5],[0.6,0.7])> <0.7,([0.4,0.5,0.7,0.5];[0.3,0.4])	.9],[0.8,0.3])>
<0.4,([0.4,0.3,0.2,0.1];[0.6,0.5],[0.5,0.6])> <0.5,([0.3,0.4,0.5,0.6];[0.9,0	.3],[0.3,0.8])>
<0.8,([0.5,0.4,0.2,0.3];[0.4,0.7],[0.8,0.5])> <0.3,([0.5,0.5,0.4,0.6];[0.3,0.5])>	.8],[0.6,0.4])>
<0.4,([0.4,0.5,0.6,0.7];[0.4,0.8],[0.7,0.3])> <0.7,([0.4,0.6,0.3,0.4];[0.8,0.4])	.6],[0.5,0.7])>
Table 3: Decision matrix of Expert 3	
<0.1,([0.4,0.5,0.6,0.9];[0.2,0.8],[0.7,0.4])> <0.5,([0.3,0.4,0.5,0.4];[0.3,0.4,0.5,0.4])	.7],[0.7,0.6])>
<0.9,([0.9,0.6,0.3,0.4];[0.4,0.8],[0.6,0.4])> <0.4,([0.4,0.5,0.6,0.7];[0.5,0.6,0.7])	.8],[0.8,0.4])>
<0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.5,([0.7,0.6,0.3,0.2];[0.8,0	.2],[0.5,0.8])>
$Z^{(3)} = \underbrace{<0.8, ([0.4, 0.5, 0.1, 0.2]; [0.4, 0.8], [0.8, 0.6])>} < <0.5, ([0.8, 0.4, 0.3, 04]; [0.4, 0.6])>} $	8],[0.7,0.5])>
<0.3,([0.6,0.2,0.3,0.4];[0.5,0.6],[0.6,0.5])> <0.6,([0.4,0.5,0.6,0.5];[0.4,0.5,0.6,0.5])	.8],[0.6,0.4])>
<0.7,([0.4,0.5,0.4,0.1];[0.3,0.7],[0.8,0.4])> <0.2,([0.3,0.4,0.5,0.9];[0.5,0.4,0.5,0.9])	.6],[0.8,0.5])>
<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.1,([0.6,0.7,0.8,0.6];[0.4,0.4])>	.9],[0.8,0.3])>
<0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> <0.9,([0.3,0.4,0.3,0.5];[0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,	.7],[0.8,0.3])>
Table 4: Decision matrix of Expert 4	
<0.2.([0.1.0.4.0.5.0.3];[0.4.0.8],[0.8.0.5])> <0.3.([0.3.0.4.0.5.0.6];[0.5.0])	.8].[0.7.0.4])>
<0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.2];[0.8,0.4])>	.3],[0.2,0.9])>
<0.9.([0.3.0.4,0.5,0.7];[0.4,0.7],[0.7,0.4])> <0.3.([0.6,0.8,0.3,0.2];[0.3,0	.8],[0.8,0.4])>
<0.3.([0.3.0.5.0.6.0.9];[0.4.0.7],[0.8.0.5])> <0.6.([0.6.0.3.0.1.0.4];[0.5.0	.6].[0.7.0.5])>
$Z^{(4)} = {\langle 0.6, ([0.9, 0.3, 0.1, 0.2]; [0.5, 0.6], [0.8, 0.4]) \rangle} \langle 0.1, ([0.6, 0.2, 0.5, 0.1]; [0.5, 0.6], [0.8, 0.4]) \rangle}$.7],[0.7,0.6])>
<0.3,([0.4,0.7,0.8,0.9];[0.4,0.7],[0.5,0.6])> <0.4,([0.4,0.5,0.6,0.4];[0.6,0])	.5],[0.8,0.8])>
<0.7,([0.4,0.6,0.3,0.5];[0.7,0.8],[0.6,0.5])> <0.1,([0.5,0.8,0.7,0.3];[0.4,0	.7].[0.8.0.3])>

Step 2: Pythagorean trapezoidal fuzzy ordered decision matrix

Table 1:	Decision matrix of Expert 1	
	<0.6,([0.3,0.4,0.4,0.3];[0.5,0.6],[0.4,0.7])>	<0.5,([0.7,0.5,0.6,0.3];[0.4,0.6],[0.5,0.6])>
	<0.7,([0.4,0.3,0.6,0.3];[0.4,0.6],[0.6,0.5])>	<0.5,([0.4,0.3,0.4,0.2];[0.3,0.8],[0.6,0.5])>
	<0.8,([0.5,0.3,0.6,0.4];[0.5,0.7],[0.8,0.5])>	<0.6,([0.2,0.1,0.3,0.5];[0.6,0.5],[0.3,0.8])>
7(1	<0.9,([0.9,0.6,0.4,0.1];[0.3,0.8],[0.6,0.5])>	<0.5,([0.4,0.3,0.4,0.2];[0.3,0.8],[0.6,0.5])>
$\Sigma \equiv$	<0.3,([0.3,0.4,0.5,0.6];[0.8,0.4],[0.5,0.7])>	<0.2,([0.4,0.5,0.2,0.3];[0.6,0.5],[0.4,0.7])>
	<0.4,([0.4,0.5,0.7,0.2];[0.6,0.7],[0.7,0.6])>	<0.1,([0.4,0.3,0.2,0.1];[0.4,0.6],[0.7,0.5])>
	<0.3,([0.4,0.5,0.4,0.3];[0.5,0.5],[0.8,0.6])>	<0.2,([0.6,0.8,0.9,0.2];[0.3,0.9],[0.8,0.4])>
	<0.4,([0.4,0.3,0.4,0.6];[0.4,0.7],[0.6,0.4])>	<0.3,([0.3,0.1,0.2,0.3];[0.3,0.8],[0.8,0.6])>
Table 2:	Decision matrix of Expert 2	
	<0.7,([0.4,0.5,0.7,0.5];[0.3,0.9],[0.8,0.3])>	<0.6,([0.4,0.3,0.6,0.7];[0.4,0.6],[0.6,0.6])>
	<0.9,([0.3,0.4,0.4,0.6];[0.3,0.7],[0.8,0.3])>	<0.5,([0.3,0.4,0.5,0.6];[0.9,0.3],[0.3,0.8])>
	<0.8,([0.5,0.4,0.2,0.3];[0.4,0.7],[0.8,0.5])>	<0.6,([0.4,0.5,0.7,0.8];[0.6,0.7],[0.4,0.7])>
-(2)	<0.7,([0.4,0.6,0.3,0.4];[0.8,0.6],[0.5,0.7])>	<0.5,([0.3,0.4,0.5,0.7];[0.7,0.6],[0.5,0.8])>
Z ⁽²⁾ =	<0.3,([0.8,0.2,0.3,0.4];[0.5,0.5],[0.6,0.7])>	<0.4,([0.4,0.3,0.2,0.1];[0.6,0.5],[0.5,0.6])>
	<0.2,([0.4,0.5,0.3,0.1];[0.3,0.9],[0.8,0.3])>	<0.5,([0.3,0.4,0.5,0.6];[0.5,0.5],[0.6,0.7])>
	<0.5,([0.3,0.4,0.5,0.6];[0.5,0.5],[0.6,0.7])>	<0.3,([0.5,0.5,0.4,0.6];[0.3,0.8],[0.6,0.4])>
	<0.4,([0.4,0.5,0.6,0.7];[0.4,0.8],[0.7,0.3])>	<0.2,([0.4,0.3,0.1,0.3];[0.8,0.6],[0.4,0.6])>
Table 3:	Decision matrix of Expert 3	
	<0.6,([0.4,0.5,0.6,0.5];[0.4,0.8],[0.6,0.4])>	<0.5,([0.3,0.4,0.5,0.4];[0.3,0.7],[0.7,0.6])>
	<0.9,([0.9,0.6,0.3,0.4];[0.4,0.8],[0.6,0.4])>	<0.7,([0.4,0.5,0.4,0.1];[0.3,0.7],[0.8,0.4])>
	<0.8,([0.4,0.5,0.1,0.2];[0.4,0.8],[0.8,0.6])>	<0.5,([0.7,0.6,0.3,0.2];[0.8,0.2],[0.5,0.8])>
7(3)	<0.9,([0.3,0.4,0.3,0.5];[0.4,0.7],[0.8,0.3])>	<0.5,([0.8,0.4,0.3,04];[0.4,0.8],[0.7,0.5])>
<i>L</i> _	<0.3,([0.6,0.2,0.3,0.4];[0.5,0.6],[0.6,0.5])>	<0.1,([0.4,0.5,0.6,0.9];[0.2,0.8],[0.7,0.4])>
	<0.4, ([0.4, 0.5, 0.6, 0.7]; [0.5, 0.8], [0.8, 0.4])>	<0.2.([0.3.0.4.0.5.0.9]:[0.5.0.6].[0.8.0.5])>
		=,([,],[]),[],[]),[]),
	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])>	<0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])>
	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])><0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])>	<0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4	<0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])>	<0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.3,([0.3,0.4,0.5,0.6];[0.5,0.8],[0.7,0.4])>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])> <0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])>	<0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.3,([0.3,0.4,0.5,0.6];[0.5,0.8],[0.7,0.4])> <0.4,([0.4,0.5,0.6,0.4];[0.6,0.5],[0.8,0.8])>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])> <0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])> <0.9,([0.3,0.4,0.5,0.7];[0.4,0.7],[0.7,0.4])>	<pre><0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.3,([0.3,0.4,0.5,0.6];[0.5,0.8],[0.7,0.4])> <0.4,([0.4,0.5,0.6,0.4];[0.6,0.5],[0.8,0.8])> <0.7,([0.4,0.6,0.3,0.5];[0.7,0.8],[0.6,0.5])></pre>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])> <0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])> <0.9,([0.3,0.4,0.5,0.7];[0.4,0.7],[0.7,0.4])> <0.8,([0.4,0.9,0.6,0.3];[0.5,0.5],[0.6,0.7])>	<pre><0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.3,([0.3,0.4,0.5,0.6];[0.5,0.8],[0.7,0.4])> <0.4,([0.4,0.5,0.6,0.4];[0.6,0.5],[0.8,0.8])> <0.7,([0.4,0.6,0.3,0.5];[0.7,0.8],[0.6,0.5])> <0.6,([0.6,0.3,0.1,0.4];[0.5,0.6],[0.7,0.5])></pre>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])> <0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])> <0.9,([0.3,0.4,0.5,0.7];[0.4,0.7],[0.7,0.4])> <0.8,([0.4,0.9,0.6,0.3];[0.5,0.5],[0.6,0.7])> <0.2,([0.1,0.4,0.5,0.3];[0.4,0.8],[0.8,0.5])>	<pre><0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.3,([0.3,0.4,0.5,0.6];[0.5,0.8],[0.7,0.4])> <0.4,([0.4,0.5,0.6,0.4];[0.6,0.5],[0.8,0.8])> <0.7,([0.4,0.6,0.3,0.5];[0.7,0.8],[0.6,0.5])> <0.6,([0.6,0.3,0.1,0.4];[0.5,0.6],[0.7,0.5])> <0.1,([0.6,0.2,0.5,0.1];[0.5,0.7],[0.7,0.6])></pre>
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])> <0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])> <0.9,([0.3,0.4,0.5,0.7];[0.4,0.7],[0.7,0.4])> <0.8,([0.4,0.9,0.6,0.3];[0.5,0.5],[0.6,0.7])> <0.2,([0.1,0.4,0.5,0.3];[0.4,0.8],[0.8,0.5])> <0.3,([0.4,0.7,0.8,0.9];[0.4,0.7],[0.5,0.6])>	$< 0.1, ([0.6, 0.7, 0.8, 0.6]; [0.4, 0.9], [0.8, 0.3]) > \\ < 0.1, ([0.4, 0.5, 0.6, 0.5]; [0.6, 0.5], [0.7, 0.8]) > \\ < 0.3, ([0.3, 0.4, 0.5, 0.6]; [0.5, 0.8], [0.7, 0.4]) > \\ < 0.4, ([0.4, 0.5, 0.6, 0.4]; [0.6, 0.5], [0.8, 0.8]) > \\ < 0.7, ([0.4, 0.6, 0.3, 0.5]; [0.7, 0.8], [0.6, 0.5]) > \\ < 0.6, ([0.6, 0.3, 0.1, 0.4]; [0.5, 0.6], [0.7, 0.5]) > \\ < 0.1, ([0.6, 0.2, 0.5, 0.1]; [0.5, 0.7], [0.7, 0.6]) > \\ < 0.2, ([0.4, 0.6, 0.3, 0.2]; [0.8, 0.3], [0.2, 0.9]) > $
Table 4:	<0.2,([0.4,0.6,0.2,0.3];[0.5,0.7],[0.8,0.4])> <0.2,([0.4,0.6,0.3,0.4];[0.4,0.8],[0.8,0.5])> Decision matrix of Expert 4 <0.6,([0.9,0.3,0.1,0.2];[0.5,0.6],[0.8,0.4])> <0.5,([0.4,0.2,0.2,0.5];[0.3,0.8],[0.8,0.4])> <0.9,([0.3,0.4,0.5,0.7];[0.4,0.7],[0.7,0.4])> <0.8,([0.4,0.9,0.6,0.3];[0.5,0.5],[0.6,0.7])> <0.2,([0.1,0.4,0.5,0.3];[0.4,0.8],[0.8,0.5])> <0.3,([0.4,0.7,0.8,0.9];[0.4,0.7],[0.5,0.6])> <0.3,([0.6,0.8,0.3,0.2];[0.3,0.8],[0.8,0.4])>	<pre><0.1,([0.6,0.7,0.8,0.6];[0.4,0.9],[0.8,0.3])> <0.1,([0.4,0.5,0.6,0.5];[0.6,0.5],[0.7,0.8])> <0.3,([0.3,0.4,0.5,0.6];[0.5,0.8],[0.7,0.4])> <0.4,([0.4,0.5,0.6,0.4];[0.6,0.5],[0.8,0.8])> <0.7,([0.4,0.6,0.3,0.5];[0.7,0.8],[0.6,0.5])> <0.6,([0.6,0.3,0.1,0.4];[0.5,0.6],[0.7,0.5])> <0.1,([0.6,0.2,0.5,0.1];[0.5,0.7],[0.7,0.6])> <0.2,([0.4,0.6,0.3,0.2];[0.8,0.3],[0.2,0.9])> <0.1,([0.5,0.8,0.7,0.3];[0.4,0.7],[0.8,0.3])> </pre>

Step 3: Apply the induced interval Pythagorean trapezoidal fuzzy ordered weighted averaging (I - IPTFOWA) operator to aggregate all the individual Pythagorean trapezoidal fuzzy ordered decision matrix, $Z^{(k)}$ (k = 1, 2, 3, 4) of the alternative B_i .

- $\tilde{z}_{1}^{(1)} = ([0.43, 0.44, 0.46, 0.36]; [0.59, 0.57], [0.44, 0.46])$
- $\tilde{z}_{1}^{(2)} = ([0.37, 0.31, 0.46, 0.29]; [0.43, 0.71], [0.62, 0.51])$
- $\tilde{z}_{1}^{(3)} = ([0.38, 0.25, 0.46, 0.39]; [0.49, 0.72], [0.59, 0.58])$
- $\tilde{z}_{1}^{(4)} = ([0.96, 0.44, 0.40, 0.25]; [0.36, 0.76], [0.61, 0.48])$

$$\begin{split} \tilde{z}_{2}^{(1)} &= \left(\begin{bmatrix} 0.47, 0.37, 0.57, 0.55 \end{bmatrix}; \begin{bmatrix} 0.40, 0.78 \end{bmatrix}, \begin{bmatrix} 0.69, 0.46 \end{bmatrix} \right) \\ \tilde{z}_{2}^{(2)} &= \left(\begin{bmatrix} 0.33, 0.39, 0.38, 0.45 \end{bmatrix}; \begin{bmatrix} 0.69, 0.64 \end{bmatrix}, \begin{bmatrix} 0.54, 0.48 \end{bmatrix} \right) \\ \tilde{z}_{2}^{(3)} &= \left(\begin{bmatrix} 0.43, 0.44, 0.43, 0.54 \end{bmatrix}; \begin{bmatrix} 0.49, 0.69 \end{bmatrix}, \begin{bmatrix} 0.59, 0.57 \end{bmatrix} \right) \\ \tilde{z}_{2}^{(4)} &= \left(\begin{bmatrix} 0.37, 0.49, 0.40, 0.54 \end{bmatrix}; \begin{bmatrix} 0.73, 0.67 \end{bmatrix}, \begin{bmatrix} 0.52, 0.60 \end{bmatrix} \right) \\ \tilde{z}_{3}^{(1)} &= \left(\begin{bmatrix} 0.41, 0.41, 0.51, 0.49 \end{bmatrix}; \begin{bmatrix} 0.39, 0.74 \end{bmatrix}, \begin{bmatrix} 0.63, 0.47 \end{bmatrix} \right) \end{split}$$

 $\tilde{z}_{3}^{(2)} = ([0.62, 0.53, 0.41, 0.42]; [0.41, 0.76], [0.71, 0.40])$

 $\tilde{z}_3^{(3)} = ([0.51, 0.57, 0.25, 0.26]; [0.61, 0.72], [0.69, 0.56])$

 $\tilde{z}_3^{(4)} = ([0.48, 0.45, 0.33, 0.45]; [0.44, 0.75], [0.75, 0.42])$

- $\widetilde{z}_{4}^{(1)} = ([0.53, 0.34, 0.34, 0.33]; [0.49, 0.73], [0.75, 0.43])$
- $\tilde{z}_{4}^{(2)} = ([0.40, 0.43, 0.45, 0.52]; [0.52, 0.71], [0.79, 0.57])$
- $\widetilde{z}_{4}^{(3)} = ([0.41, 0.57, 0.42, 0.50]; [0.52, 0.78], [0.69, 0.41])$
- $\widetilde{z}_{4}^{(4)} = ([0.43, 0.58, 0.47, 0.37]; [0.55, 0.62], [0.63, 0.62])$

Step 4: Applying the known weight vector by using operational law 3 in definition 7, and score function to order the overall preference interval Pythagorean trapezoidal fuzzy values such that,

 $\widetilde{z}_{1}^{(1)} = ([0.52, 0.35, 0.64, 0.54]; [0.67, 0.50], [0.66, 0.35])$ $\tilde{z}_1^{(2)} = ([0.44, 0.37, 0.55, 0.34]; [0.46, 0.14], [0.75, 0.44])$ $\tilde{z}_1^{(3)} = ([0.31, 0.35, 0.36, 0.28]; [0.53, 0.51], [0.51, 0.71])$ $\tilde{z}_{1}^{(4)} = ([0.57, 0.26, 0.24, 0.15]; [0.28, 0.74], [0.63, 0.64])$ $\tilde{z}_{2}^{(1)} = ([0.37, 0.29, 0.45, 0.44]; [0.36, 0.74], [0.72, 0.53])$ $\tilde{z}_{2}^{(2)} = ([0.51, 0.68, 0.56, 0.75]; [0.80, 0.40], [0.75, 0.48])$ $\tilde{z}_{2}^{(3)} = ([0.56, 0.44, 0.68, 0.66]; [0.43, 0.64], [0.82, 0.39])$ $\tilde{z}_{2}^{(4)} = ([0.60, 0.61, 0.60, 0.75]; [0.56, 0.47], [0.67, 0.45])$ $\tilde{z}_{3}^{(1)} = ([0.28, 0.27, 0.19, 0.27]; [0.33, 0.84], [0.62, 0.19])$ $\tilde{z}_{3}^{(2)} = ([0.71, 0.79, 0.35, 0.36]; [0.69, 0.59], [0.77, 0.44])$ $\tilde{z}_{3}^{(3)} = ([0.74, 0.63, 0.49, 0.50]; [0.44, 0.66], [0.75, 0.33])$ $\tilde{z}_3^{(4)} = ([0.32, 0.32, 0.40, 0.39]; [0.35, 0.69], [0.68, 0.54])$ $\tilde{z}_{4}^{(1)} = ([0.42, 0.27, 0.27, 0.26]; [0.44, 0.79], [0.67, 0.50])$ $\tilde{z}_{4}^{(2)} = ([0.48, 0.56, 0.54, 0.62]; [0.56, 0.75], [0.75, 0.50])$ $\tilde{z}_{4}^{(3)} = ([0.25, 0.34, 0.28, 0.22]; [0.44, 0.75], [0.50, 0.75])$ $\tilde{z}_{4}^{(4)} = ([0.57, 0.79, 0.58, 0.07]; [0.59, 0.59], [0.85, 0.28])$

Step 5: Applying the (I - IPTFHA) operator to originate the mutual inclusive predilection interval Pythagorean trapezoidal fuzzy values \tilde{z}_i . Consider that,

(w = 0.20, 0.30, 0.35, 0.15) and,

 $\Gamma = (0.155, 0.345, 0.345, 0.155)$

- $\tilde{z}_1 = ([0.36, 0.28, 0.36, 0.38]; [.44, .75], [.66, .34])$
- $\tilde{z}_2 = ([0.56, 0.65, 0.48, 0.53]; [.70, .54], [.75, .46])$
- $\tilde{z}_3 = \left(\left[0.53, 0.47, 0.57, 0.47 \right]; \left[.46, .65 \right], \left[.68, .39 \right] \right)$
- $\tilde{z}_4 = ([0.49, 0.48, 0.47, 0.52]; [.49, .63], [.69, .47])$

Step 6: Applying score function $s(\tilde{z}_i)$ of the interval Pythagorean trapezoidal fuzzy numbers such that, $s(z_1)=0.035, s(z_2)=-0.002, s(z_3)=-0.004, s(z_4)=-0.014$

Step 7: We determine the Rank of all alternatives according to the Score function $s(\tilde{z}_i)$ of the interval Pythagorean trapezoidal fuzzy numbers $s(\tilde{z}_i)$ }, hence $B_1 \ge B_4 \ge B_2 \ge B_3$. B_1 is best alternative (Fig. 2).

6. Conclusions

In this paper we introduced the idea of IPTFWA, I-IPTFOWA and I-IPTFHA operators. we have defined some appropriate properties such as, monotonicity, idem potency and bounded of I-IPTFOWA and I-IPTFHA operators. We also developed aggregation I-IPTFHA operator, which is a generalization of the I-IPTFOWA operators. At the end of this paper we have constructed numerical an application of I-IPTFOWA and I-IPTFHA operators to MAGDM problems with interval Pythagorean trapezoidal fuzzy information. In future we can extend this work to other different fields.

References

- [1] L.A. Zadeh, "Fuzzy sets", Inform. Control, vol. 8, pp. 338-353, 1965.
- [2] K. Atanassov, "Intuitionstic fuzzy sets", Fuzzy Sets Syst., vol. 20 (1986) 87-96.
- [3] K. Atanassov, G. Pasi and R.R. Yager, "Intuitionistic fuzzy interpretations of multi-criteria multi- person and multi-

measurement tool decision making", Int. J. Syst. Sci., vol. 36, pp. 859-868, 2005.

- [4] D.F. Li, "Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multi attribute decision-making with incomplete preference information", Appl. Soft Comput., vol. 11, pp. 3042-3418, 2011.
- [5] Z.P. Chen, W. Yang, "A new multiple attribute group decision making method in intuitionistic fuzzy setting", Appl. Math. Model., vol. 35, pp. 4424-4437, 2011.
- [6] J.M. Merigó and A.M. Gil-Lafuente, "Fuzzy induced generalized aggregation operators and its application in multi-person decision making", Expert Syst. Appl., vol. 38, pp. 9761-9772, 2011.
- [7] C. Cornelis, G. Deschrijver and E.E. Kerre, "Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application", Int. J. Approx. Reason., vol. 35, pp. 55-95, 2004.
- [8] H.Y. Zhang, W.X. Zhang and W.Z. Wu, "On characterization of generalized interval-valued fuzzy rough sets on two universes of discourse", Int. J. Approx. Reason., vol. 51, pp. 56-70, 2009.
- [9] K. Atanassov, "New operations dened over the intuitionistic fuzzy sets", Fuzzy Sets Syst., vol. 61, pp. 137-142, 1994.
- [10] K. Atanassov, "An equality between intuitionistic fuzzy sets", Fuzzy Sets Syst., vol. 79, pp. 257-258, 1996.
- [11] K. Atanassov, "Remarks on the intuitionistic fuzzy sets--- III", Fuzzy Sets Syst, pp. 401-402, 1995.
- [12] K. Atanassov, "Intuitionistic fuzzy sets: theory and applications", Heidelberg, Germany: Physica-Verlag, 1999.
- [13] Z.S. Xu and R. R. Yager, "Dynamic intuitionistic fuzzy multiattribute decision making", Int J Approx Reason, pp. 246-262, 2008.

- [14] Z. S. Xu and J. Chen, "An approach to group decision making based on interval-valued intuitionistic judgment matrices", System Engineer -- Theory & Practice, vol. 27, no. 4, pp. 126-133, (2007a) (in Chinese).
- [15] Z.S. Xu and J. Chen, "On geometric aggregation over intervalvalued intuitionistic fuzzy information", Fourth Int. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD 2007)", vol. 2, pp. 466-471, 2007b.
- [16] J.Q. Wang, "Overview on fuzzy multi-criteria decision making approach", Control Decision, vol. 23, pp. 601-606, 2008.
- [17] J.Q. Wang and Z. Zhang, "Multi-criteria decision-making method with incomplete certain information based on intuitionistic fuzzy number", Control Decision, vol. 24, pp. 226-230, 2009.
- [18] R.R. Yager, "Pythagorean fuzzy subsets", Proc. of Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, pp. 57-61, 2013.
- [19] S. Zhi, X. Guo-ping and C. Ming-yuan, "Some induced intuitionistic fuzzy aggregation operators applied to multi-attribute group decision making", Int. J. General Systems, vol. 40, no. 8, pp. 805-835, 2011.
- [20] R.R. Yager, "On ordered weighted averaging aggregation operators in multicriteria decision making", IEEE Transactions on Systems, Man and Cybernetics, vol. 18, no. 1, 183-190, 1988.
- [21] H. B. Mitchell, "An intuitionistic OWA operator, international journal of uncertainty", Fuzzyiness and Knowledge-based Systems, vol. 12, no. 6, 843- 860, 2004.
- [22] Xu Zhang and Z. S. Xu, "Extension of TOPSIS to multiple criteria decision making with Pythagorean", Fuzzy Sets, vol. 29, pp. 1061-1078, 2014.