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A B S T R A C T 

In this article, a new error balance approach utilizing local error per unit step (LEPUS) control strategy has been developed. The error control strategy has 

been upgraded to incorporate the temporal and spatial discretization error by an adjusting parameter, which has been linked with species gradient present 

in the chemical mechanism. The accuracy and efficiency of the proposed improved LEPUS (ILEPUS) have been checked by solving the one-dimensional 

compressible gaseous flow in the absence of a reaction mechanism and compared with the old local error per step (LEPS) and traditional LEPUS 
strategies. With respect to the concentrations of nitrogen oxide and nitrogen dioxide for the winter season, the simulation predictions have been found to 

have a positive correlation with the recent experimental data collected in Changchun city, China. For further insights into the scheme, both one- and two-

dimensional reacting flows with complex chemical reactions have also been solved using ILEPUS and LEPS, where the ILEPUS scheme has proven better 
performance as compared with LEPS and LEPUS. 
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1. Introduction 

The burning of fossil fuels is generally an enriched 

source of nitrogen and sulfur oxides. As a result of increased 

use of fossil fuels, their releases have more than doubled in 

the last century. Consequently, an alarming level of global 

warming and the adverse effect of pollutants on the 

environment have motivated researchers to study them 

thoroughly in the context of their effect on the atmosphere. 

The main sources of these pollutants are emissions from 

power plants, motor vehicles, etc. which are enriched 

sources of Volatile Organic Compound (VOCs), CO, CO2, 

Nitrogen Oxides (NOx), Sulfur Oxides (SOx) and particulate 

matter (PM) [17]. The photo-chemical reaction converts 

NOx into ozone at a large distance downwind from the 

source. Similarly, other products such as CO and PM are 

known to have adverse health effects. In addition, the 

emitted pollutants from these sources include hundreds of 

species and therefore, achieving a high spatial resolution are 

challenging. Moreover, the governing equations that handle 

these models are characterized by coupling, non-linearity, 

and stiffness. These factors emphasized that a specialized 

solver with error control should be developed for dealing 

with such a complex model. The reason for the number of 

chemical rate equations, which needs to be solved, increases 

with the number of species; and for comprehensive analysis, 

three-dimensional calculations are required. Detailed 

analysis is also important because the limited capability of a 

comprehensive chemistry/transport model raised issues for 

environmental scientists and policymakers [2]. 

Historically, the development of the most advanced 

atmosphere and chemistry models goes back to the late 

1970s and early 1980s. After that, these models have been 

updated continuously to develop efficient and well-

structured solvers. So far, remarkable progress has been 

made to counter the stiffness problem by applying different 

pre-conditioner, parameter optimization and sophisticated 

error control strategy. The method of lines is preferred to 

avoid the splitting error for a stiff and coupled system of 

equations [3, 4]. Despite the other factors, estimating and 

controlling the computational error has a vital role in the 

efficiency and accuracy of the stiff solvers.  

For an efficient solution of the stiff partial differential 

equation, a rigorous error analysis should be performed in 

spatial and temporal discretization schemes. Error analysis 

techniques may be divided into two categories, local error 

per step (LEPS) and local error per unit step (LEPUS). 

Adequate literature is available on LEPS compared to the 

limited literature on LEPUS control strategy. It was 

introduced in the work presented in ref. [5] and further 

extended by other groups [3] and [6]. The method was used 

to solve the Euler equations and was also applied to study a 

combustion problem [7]. Extensive research has revealed 

that another contribution in the current field is the work of 

[8] as they have applied it to solve the Euler equations. 

The LEPUS strategy establishes a link between global 

error and accuracy tolerance, which is not the case with the 

LEPS control strategy. Also, the latter strategy exploits the 

local truncation error and the solver performs better with the 

first strategy [5, 9]. The ILEPUS applies the error balance 

approach in the framework of LEPUS control strategy that is 

not present in the LEPS control strategy. This form of the 

error balance approach is generally not suitable for stiff 

problems discussed here due to the variation in spatial error 

at each time step. It takes much more time steps in the case 

of spatial error that normally happened at the end of the time 

at which the solution is sought. Initially, the spatial error is 

too high, and the solution is accepted even though the results 

have not been converged. Therefore, these two drawbacks 

have been controlled to improve typical LEPUS strategy in 

this study. 

The prime aim of this study is to devise a robust and 

efficient scheme to solve only chemical reaction models. 

Therefore, ILEPUS was proposed as a new error balance 

approach because typical LEPUS was unable to provide an 

optimal performance of the stiff solver. The reason is the 

provided tolerance, which varies according to the spatial 

error at each step. Spatial error is the difference between the 
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primary and secondary solutions of the model equation that 

is obtained using various discretization schemes and source 

term integration method. The novel idea is introduced by 

varying the adjusting parameters adaptively and is linked to 

the difference in species gradient using the arc-length 

adaptive mechanism in time [9]. In ILEPUS both the step 

size acceptance and rejection procedure are modified that 

helped in improving the performance by reducing the time 

step and other statistical data. The NDF2 method is used as a 

time Integrator due to its less truncation error and better 

performance in atmospheric modeling compared with BDF2 

method [1]. Moreover, the other optimization is performed 

by connecting the Jacobian matrix calculation at each grid 

point with a spatial discretization error at each time step. 

In this paper, one-dimensional problems have been 

tackled with ILEPUS and LEPS schemes, and comparisons 

of results have shown an excellent agreement with the 

experimental data [10]. It was also noted that nitrogen oxide 

trends are also same everywhere and that the only difference 

is in concentration. Furthermore, a peak was observed 

around 9 AM and can be seen in [11-13]. The accuracy 

between the expected results and the simulated results is 

verified with the correlation coefficient indicated in [12]. In 

this article, the development of ILEPUS strategy with 

adaptive error control, numerical comparison to the 

atmospheric reaction-diffusion problem and correlation with 

experimental data were discussed. 

2. Materials and Methods 

2.1 Atmospheric diffusion equation 

The transportation of pollutants in the air is usually 

modelled by the atmospheric diffusion equation and its 2D case 

is presented as follows [5]. 
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where, N, Ci , Ei and Ri are the number of species being 

modeled, concentration of the i
th
 pollutants, emission source of 

i
th
 species and chemical reaction of i

th
 species, respectively. 

Furthermore, u, v are the wind velocity along the coordinated 

axes, Kx, Ky are the diffusivity coefficients and k1,i, k2,i are the 

dry and wet deposition coefficients of the i
th
 species. 

2.2 Implementation details 

Details of implementing an optimized form of the LEPUS 

control strategy [3, 5, 8] are linked by writing Eq. (1) in the 

following compact form: 
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Generalized procedure for this is to apply the method of 

lines that will reduce the system of ordinary differential 

equations as follows: 

( , ( ))
N n

V F t V t         (3) 

with known initial condition U(0) and  
0

(t )
p

n n
V


 is numerical 

approximate solution at a set of discrete time points 

0 1 2
0 ....

p f
t t t t t     generated by time integrators. The key 

idea of this error control strategy is to estimate the local growth 

in spatial discretization error and to link it with temporal error 

given in Eq. 4 [7]: 

  ‖  (    )‖   ‖  (    )‖ (4) 

where   is the adjusting parameter. In the subsequent section, a 

brief discussion of the estimation of local growth in spatial 

discretization error and novelty regarding the different 

parameter optimization is presented. Since Eq. (2) has been 

representing the reacting flow, the ordinary differential equation 

function given in Eq. (3) will be of the form: 

)
( , ( )) ( , ( )) ( , ( ))

f S

N n N n N n
F t V t F t V t F t V t    (5) 

where ( , ( ))
f

N n
F t V t  and ( , ( ))

s

N n
F t V t  stands for convective 

term discretization and source term integration arising from 

atmospheric chemistry. Applying second order upwind scheme 

and midpoint method for source term integration will give the 

convective flux at j
th
 grid point of the form: 
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and integration of the source term with the midpoint gives 

( , ( )) ( ( ))
s
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F t V t V t    (7) 

which leads the Eq. (6) to the following form for j
th
 grid point 

 1 1 1

,2 1

1

( , ( )) 1 ( ( 1) ( 1))

( ( ) ( )) ( ( ))

j

f

j n j n j jx r

j n j n j n

F t V t B r B r

V t V t V t



 



   

 

 (8) 

and for parameter clarification [3]. Applying different 

discretization and integration to Eq. (2), according to 

requirement of the LEPUS error control strategy, we have  

1 1( ) ( , ( ))n n N n n nv t G t v t     (9) 

having initial condition 1( ) ( )n n nv t V t   and ( )nV t is the 

solution of Eq. (2) at the nth time step. Finally, the local growth 

in time spatial discretization error will be the difference between 

primary solution and secondary solution of Eq. (3) and Eq. (9) 

given as 

1 1 1 1( ) ( ) ( )s n n n nE t V t v t       (10) 

and it will attain the following form after applying NDF2 

method as a time integrator to Eqs. (2) and (9) given as 

 

1
1 1

1 1 1 1
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and for constants q  and q [1]  and q is the order of method. 

The Eq. (11) can be further modified by writing it in terms of 

residual of auxiliary ODE given by Eq. (9): 

 1
1 1 11

( ) ( ) ( , ( ))s n q q n nq
E t t r t V t   

     (12) 

which is the local growth in spatial discretization error and 

1 1( , ( ))n nr t V t   is the residual of auxiliary ODE defined by Eq. 

(9). So, the time tolerance for „TOL(tn+1)‟ for the LEPUS con-

trol strategy being implemented at the step
1nt 

is given by 

 1
1 1 11

( ) ) ( , ( ))n q q n nq
TOL t r t V t   

    (13) 

The Eq. (12) predicts that error tolerance is proportional to 

the local error, and indirectly to the global error which is not 

true in connection with the LEPS control strategy [5, 7]. 

Additionally, the procedure of acceptance of the time step size 

is related to the following criteria. 

1

1

( )

( )
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S n

le t

E t



     (14) 

The cognition of Eq. (14) shows that the adjusting 

parameter has a close link with accepting and rejecting the 

time step and was kept constant in previous studies [3, 5, 7]. 

The decision criteria defined by Eq. (14) will give unnecessary 

acceptance and rejection of time step that will affect the 

performance of the code. The reason is the unpredictable 

behavior of local growth in spatial discretization error 

s n+1E (t ) due to the model stiffness and which is being handled 

with the inclusion of the variable adjusting parameter . 

Consequently, the adjusting parameter is linked with species 

gradient present in the chemical model and is varied adaptively. 

Therefore, the modified arc-length adaptive mechanism in time 

is used that links the time derivative to the ratio of two 

consecutive time steps in the following way [9]. 
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where 
.

( )nV t and 
.

1( )nV t  is the time derivative at two 

consecutive time steps, defined by Eq. (3). Naturally, at time 

step 1nt  the Eq. (15) is satisfied with adjusting parameter
o

and we are interested that at time step nt  the relation
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n
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t TOL
 , must be satisfied for TOL given by the Eq. (14).  

For small t , 
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and combining it with Eq. (15) gives 

2

1
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 
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   (17) 

Because of the small-time step, the local and spatial 

discretization errors remain unchanged. Hence, Eq. (17) links 

the adjusting parameter with species gradient and it reduces to 

the original
o  [5, 7, 8] for species gradient remains constant.  

Hence, the combination of Eq. (14) and Eq. (17) has helped 

reduce the unnecessary acceptance and rejection of the number 

of steps. Therefore, the case of small-time tolerance given by 

Eq. (13) is adjusted using Eq. (17) as it includes the previous 

time gradient.  

The other case when 1E ( )s nt  is higher than Eq. (14) will 

give unnecessary acceptance of step size and therefore Eq. (17) 

is modified in the following manner: 

2
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The adaptive variation of adjusting a parameter based 

upon Eq. (17) and Eq. (18) along with Eq. (14) has improved 

performance of ILEPUS compared to the original LEPUS 

approach [5, 7, 8]. It is novelty in the existing theory of the 

LEPUS control strategy based on local growth in spatial 

discretion error given by Eq. (4). Recalling the NDF2 method, 

as discussed in [1] has been used as a time integrator.  Its 

attractive feature includes the usage of 1.26 times higher step 

size compared to the BDF2 method and is written in the 

following form: 

1 1

4

1 11 1 1
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where the typical values of various parameters are 

1 2
4 / 3,  1 / 3,  2 / 3      and 1/ 9q    

respectively. The above equation can be further simplified in 

the following form. 
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where 1/ 9q    and it implies that 0.9  . Using the 

modified Newton modified method the above equation will take 

the following form for (m+1)
th
  correction iteration: 
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Consequently, the Jacobian matrix given by Eq. (21) will 

take the following form according to ODE function defined by 

Eq. (3) 
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2
[1 ] [1 ][1 ] ( )

f s
t J t J t J t             (23) 

The first term on the right side of Eq. (23) originates from 

the Jacobian of flow part and the second term shows the 

Jacobian of chemistry term discussed in Eq. (1). Since 

the source term is dominant in the atmospheric 

dispersion arising from chemical mechanism, the Eq. (23) 

reduces to the following form: 

2
[1 ] [1 ( ) ]

s s f
t J t J t J J           (24) 

The simplification procedure relating to Jacobian evaluation 

is different, as discussed in [6] and has been successfully 

applied here.  

Case 1: Simulation of compressible flow with equilibrium 

chemistry in one-dimensional shock tube was done with the 

initial molar ratio, 2/1/7 of species H2/O2/Ar with the 

assumption that these are thermally perfect gases. The reaction 

mechanism is related to burning of hydrogen and oxygen [4].  

Initially, the temperature and pressure on the left side of the 

shock tube were 400 k and 8000 m
-3
 respectively, while on the 

right side, these parameters were 1200 k and 80000 m
-3

, 

respectively. The procedure for calculating the density and 

extension of equation state of multi-species is given in [4]. The 

total energy E of the mixture is calculated according to the 

procedure: 

2

2

u
E p h


       (25) 

and the procedure for enthalpy for thermally perfect system was 

also elaborated in ref. [4]. The Fig. 1 shows the results are 

comparable to the earlier predicted results [4], however with 

rapid convergence. For further information the results for LEPS 

can be seen in [7]. 

 

Fig. 1: Simulation results of the density in compressible flow  having 

equilibrium chemistry. 

Case II: A simple model to represent the troposphere 

reaction mechanism has been simulated [13]. In this case, there 

are only seven species, and the stiffness naturally prevails due to 

the competition of volatile organic compounds (VOCs), which 

occur much less time than the fast-equilibrating inorganic 

reactions (3) and (4). Being a highly lumped species ROC in 

volatile reactions does not justify the actual emission generated 

in the environment, but here the main purpose is to investigate 

the adaptive error control strategy in terms of its efficiency and 

accuracy of the predicted results. The simulation time is two 

days with the assumption of background-free atmosphere. The 

span of the domain is 5 km and the transmissive boundary 

conditions have been assumed on the right-hand side, while on 

the left source has been assumed with the concentration: 

NO=35 
3/g cm  NO2=40

3/g cm , which were similar to 

experimental data acquired in Changchun city of China [10]. 

Generally, the atmospheric modeling reaction mechanism 

blends both; photolysis and temperature dependent reactions. 

The photolysis rate constant, which has a direct relation with 

solar zenith angle, is given by the following relation: 

( sec( ))b

pk ae 
     (26) 

where a, and b are specific for each photolysis chemical 

reaction, φ is the solar zenith angle, which is estimated from the 

following expression: 

cos( ) cos( ) cos( ) cos( ) sin( ) sin( )LHA DEC LAT DEC LAT     (27) 

where the solar declination angle (DEC) is taken as 23.27 and 

the Latitude (LAT) is 43.92o.  The remaining parameter local 

hour angle is given by: 

0

1.0 4
4.32

t
LHA 

 
   

 
    (28) 

where ‟t‟ is time in seconds. Similarly, the temperature-

dependent rate constants have been evaluated using Arrhenius 

expression given as: 

( )
Ea

R Tu
k AT e



      (28) 

where parameters Ea, Ru and T stand for an experimental 

activation energy, the universal gas constant and temperature. 

The temperature T is a function of daytime and is given by the 

following expression: 

5
289.86 8.3 sin((7.27 10 ) 1.96)T t


      (29) 

The initial conditions of different species for reaction 

mechanism are shown in table (1). This is one of the 

simplest models which completely describe the major 

nitrogen oxides behavior comprising of the VOCs compound 

as well. There are two routes related to production of NO2. 

First route is combination of RP with NO and others is the 

results of combination of NO and O3. Also, in the presence  

Table 1: Initial concentration of species used for simulation 

No. Name of Species 3/g cm  

1 

2 

3 

4 

NO2 

NO 

O3 

ROC 

1.5 

1.2 

1.4 

1.5 

5 

6 

7 

RP 

SGN 

SNGN 

0.00 

0.00 

0.00 
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of sunlight the NO2 reduces to NO and ozone (O3) and this 

cycle is continued. The initial concentration used in the 

simulation is given in table (1). 

Where the abbreviations used in table 1 are; ROC is the 

reactive organic compound, RP represents the radical pool, 

SGN and SNGN show the stable gaseous and non-gaseous 

nitrogen compounds respectively. Similar mechanism has also 

been discussed by  Zhong [14]  in which  the Reactive 

Organic Compound (ROC)  and other compound listed in 

table (1) are ignored as its detail are given in Carpenter et al. 

[15]. At origin we have solved the rate equations for which the 

Eq. (1) reduces to following form: 

dC
P LC

dt
        (30) 

where c is species concentration, P and L are the production 

and loss term of the species and has the following forms for 

NO and NO2 

3 2 4

dNO
r r r

dt
       (31) 

2
2 4 3 6 7

dNO
r r r r r

dt
        (32) 

with initial condition NO=35 3/g cm  NO2=40 3/g cm  

and other species have same concentration as discussed in 

table (1). Where, 'ir s  are the reaction rates of species [13].  

Figures 2(a) and 2(b) represent the results of the above 

 

Fig. 2: (a) Shows the comparison of the simulated results of NO to that 
experimental data at different cites of Changchun city and (b) exhibits the 

comparison of NO2. 

mentioned simple mechanism and experimental data for 

different sites in Changchun City [10]. Additionally, we 

have used the detail model and no chemical reduction 

technique is applied as RP has been removed in ref. [16]. For 

comparison with experimental we have calculated the 

correlation coefficient defined in [12] and are presented table 

(2) for different sites in Changchun City [10]. For the 

accuracy comparison we have presented correlation 

coefficient between the simulated results and experimental 

data in table (2). These coefficients show the similarity of 

simulation results and the experimental data. 

Table 2: Correlation coefficient between simulated results and experimental 
results, Neupane et al. [12] 

Serial No Sites 

Correlation Coefficient for NO and NO2 at 

different sites 

NO NO2 

1 DP 0.65146 0.81205 

2 EES20 0.62384 0.738472 

3 FP 0.75715 0.753293 

4 HZMC 0.61705 0.798037 

5 BF 0.61605 0.693662 

6 IPT 0.75385 0.717315 

The one-dimensional dispersion calculation results are 

presented in Fig. 3 (a) and Fig. 3 (b) for NO and NO2 

respectively using the ILEPUS and the LEPS respectively.  

Since there was no experimental data for one dimensional 

case, therefore, to justify its accuracy, we have solved one 

known problem given in case (I) for which results have 

already been shown in Fig. (1). 

Fig. 3: Dispersion of the one-dimensional NO and NO2 for five 

kilometers using constant wind velocity for approximately 10 hours. 
 



I. Ahmad et al. / The Nucleus 59, No. 1 (2022) 31-38 

 36 

Table 4: Results of one-dimensional atmospheric problem with uniform grid using the ILEPUS and the LEPS 

Domain Type Grid Points Methods ATOL  or є0 RTOL Nsteps  Fun Jac 

One dimensional case 321 
LEPS 105 

0.01 

0.001 

5193 

5421 

6962 

7188 

4030 

4247 

ILEPUS 0.3  5011 6362 3066 

3. Results and discussion 

Novel error balance approach ILEPUS was observed to 

produce comparable results with LEPS and methodology of 

reference [4] for the compressible flow problem in one-

dimensional shock tube with equilibrium chemistry. 

Similarly, for one-dimensional dispersion problem with 

seven reactions and reactive species, ILEPUS results were 

found to be compatible with the LEPS (see Fig. 3 (a) and 

Fig. 3 (b)). Additionally, no reduction techniques were used 

to further simplify the reaction mechanism as suggested in 

reference [16]. Comparing the experimental data, it was 

observed that the diurnal trends in NO and NO2 

concentrations were similar everywhere. Moreover, the peak 

can be seen around 9 AM [4]. The similarity in trends (see 

Fig. 2) was checked by means of the correlation coefficient. 

The lowest correlation coefficients values for NO and NO2 

were 0.61605 and 0.693662, respectively. Since the 

concentrations exhibit variations due to local atmospheric 

conditions, it is difficult to obtain numerically close values. 

It should be noted that for both one and two-dimensional 

reaction-dispersion problems, the ILEPUS took a lesser 

number of steps than that of the LEPS to approach the same 

level of accuracy. 

For simplicity, the diffusion term has been ignored. It 

was observed that ILEPUS has predicted results to the 

comparable accuracy as that of LEPS for the reference 

problem [16] with lesser number of steps. ILEPUS and 

LEPS results for various computational parameters are 

summarized in table 4. 

It can be concluded that the results with ILEPUS are 

accurate that of LEPS even for RTOL=0.01, with less 

number of steps and other computational parameters. This 

conclusion further reinforces the assumption that the 

ILEPUS is more efficient even in solving the complex case 

of high Lipschitz constant. The adjusting parameter є0 in 

table (5) was varied adaptively using Eqs. (17) and (18) after 

using reference initial value [1, 3, 5, 6]. 

4. Conclusion 

It can be concluded that the innovative error balance 

approach ILEPUS was developed to numerically solve the 

coupled reaction-dispersion problems in the atmosphere. It 

establishes the direct relationship between the global error 

and tolerance based on local growth in spatial discretization 

error. The abrupt change in the error tolerance due to 

stiffness is linked with the adaptive variation of the adjusting 

parameter, which is the novelty in the existing theory of 

error balance approach. Further tuning is performed using 

the Jacobian evaluation by linking with local growth in 

spatial discretization error. The method was applied to solve 

three problems of varying complexity: (1) compressible flow 

with equilibrium chemistry in one-dimensional shock tube 

(2) one-dimensional reaction-dispersion with seven species, 

and (3) Two-dimensional reaction-dispersion with twenty 

species. In all cases, the results were numerically consistent 

with the conventional LEPS methodology but with fewer 

computational steps. In addition, predictions of NO and NO2 

concentrations were positively correlated with observed data 

in Changchun city of China supporting the hypothesis of 

modeling adequacy with seven reacting species. For the third 

problem, the computing efficiency of ILEPUS was also 

found to be superior to that of LEPS. The efficiency of 

ILEPUS would bring more complicated problems such as 

more species, actual weather conditions etc. amenable to 

computations. 
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Nomenclature 

a  Advection speed Nsteps, Fun, Jac Number of steps, function evaluation and Jacobian 
calculation during the solution 

A, B Local Error per step, per unit step p  Pressure of the mixture 

ATOL, RTOL Absolute and Relative Tolerance q  Order of the time integrator 

   Species Concentration of ith species    Reaction Mechanism for ith species 

E  Total Energy of the mixture t time 

     Emission source of ith species u  General variable of partial differential equation 

1( )s nE t 
 

Local growth in time spatial discretization error 
Lu ,

Ru  
Left and right value of the general variables 

  , Ru and T experimental activation energy, the universal gas 
constants and temperature 

( )nV t  
The numerical approximation of the true solution at 
time tn 

( , ( ))N nF t V t  
Function of primary ordinary differential equation  
resulting from discretization of advection term and 

the integration of the source term  

1( )n nv t
 

Second numerical approximation of the partial 
differential equation  

( , ( ))f

N nF t V t  
Discretization of the advection term with second 
order upwind scheme 

X, Y  Space variables along x-axis and y-axis 

( , ( ))S

N nF t V t  
Integration of the source term 

q  
Co-efficient of the time integrator, NDF2 method 

1( , ( ))N n n nG t v t
 

Function of auxiliary  ordinary differential equation  

resulting from discretization of advection term and 
the integration of the source term 

  
Coefficient of the function of the  BDF method 

h Enthalpy   
Coefficient of the function of the  NDF2 method 

J  
Jacobian Matrix x  

Spatial discretization 

fJ ,
sJ  

Jacobian of the flow part and the source term t  
Time step 

           Wet and dry coefficient   Balancing parameter which has been varied 

adaptively 

kp  
Photolysis  rate constant µ Prefix of the general partial differential equation 

  ,     Diffusivity coefficient in x-axis and y-axis   Density  

LHA  Local Hour angles (u)  
Source term 

N Number of Species   
Solar zenith angle 

 


