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A B S T R A C T 

In a previous companion paper “On the elliptical orbit of the Earth and the position of the Sun in the sky: an engineering approach,” published in The 

NUCLEUS, we presented various computational methodologies for the position/trajectory of the Sun in the sky of an observer at Earth [1]. In this paper, the 

methodology for calculation of solar analemma (as observed from the earth surface) has been presented, along with an elaboration of the “Equation of 
Time,” as called in literature [2,3]. The computational methodologies presented in the earlier paper included: 1) an analytical approach; 2) a numerical 

algorithm; and 3) a Solar Position Algorithm commonly abbreviated as PSA from the Spanish name of its developer Plataforma Solar de Almería [4]. In the 

numerical approach, Earth’s momentum equation written in a polar coordinate system (r, θ) was numerically solved. It was also demonstrated that if the 
Earth’s momentum equation was transformed to eliminate the time dependence, it could be solved analytically. In this paper, a Cartesian coordinate system 

is used to calculate the coordinates of the pole star (Polaris) and its declination angle. The position vector of an observer that rotates with the Earth is 

calculated using a new Cartesian coordinate system, whose origin is located at the center of the Earth. The solar elevation angle and the solar azimuth angle 
are obtained by performing a set of rotations of this new coordinate system. Towards the end, the Equation of Time (EOT) is explained and used for calculating 

the solar analemma. 
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1. Introduction 

The variation in the position of Sun in the sky over an 

observer is a natural phenomenon that has intrigued 

humankind since forever. The position of Sun has been 

correlated with the occurrence of natural phenomena 

(volcanic activity, storm cycles, earthquakes, etc.) [5]. The 

motion of the Sun has also been considered as a measure of 

time, or as a phenomenon that governs the agricultural 

yields/cycles and outbreak of pandemics [6]. Due to the 

increasing price of petroleum, engineers need to efficiently 

extract energy from renewable sources, such as winds and the 

Sun. If civil engineers efficiently use the solar energy, they 

may design reliable intelligent buildings and sustainable 

environments. In the near future, the task of the engineers will 

attain more importance; however, sometimes they do not have 

enough understanding of the mathematical techniques that the 

astronomers use to calculate the Sun’s position in the sky. In 

this paper an attempt has been made to bridge the gap. 

In some recently published papers, simplified techniques 

have been presented to calculate the Sun’s position in the sky, 

however, it was pointed out that there was a need to develop 

and report new mathematical algorithms, suitable for amateur 

astronomers, students and practitioners in the field of solar 

energy, see for instance [7]. A simple parametric model, that 

describes the basic principles of the visible Sun path on the 

celestial sphere, has been presented in an earlier paper [8]. A 

review of the Sun’s position algorithms has been published by 

Blanco et. al [9].  

The Sun position algorithms are sophisticated schemes, 

which compute the position of the Sun in ecliptic, celestial 

and horizontal coordinates. Very recently, a review of the Sun 

position algorithms has been presented in [10]. On the internet 

it is also possible to find and to execute computer codes to 

calculate the position of the Sun in the sky, see for instance 

[11]. The purpose of this paper and the companion paper [1] 

is to present a self-contained material suitable for energy 

engineers to determine the Sun’s position in the sky.  

In section 2, methodology for the solar elevation angle, 

and the solar azimuth angle measured from north are 

presented. The Equation of Time (EOT) with its explanation 

is presented in section 3. Section 4 shows the calculation of 

analemma obtained using EOT [12]. It may be mentioned that 

an analemma is a diagram showing the position of the Sun in 

the sky as seen from a fixed location on Earth at the same 

mean solar time [2], and very interestingly resembles to the 

shape of figure 8 (eight) [3]. The results and discussion are 

presented in section 5.  

2.  Calculation of the Solar Elevation Angle and the 

Solar Azimuth Angle 

Before presenting the calculation of solar elevation and 

azimuthal angles, it may be recalled from the basic geometry 

that the rotations of the Earth are: (i) about its axis that points 

towards the North star, and (ii) around the Sun in an elliptical 

trajectory. A fixed Cartesian coordinate system (o, x̂1, x̂2, x̂3) 

could be defined, whose origin is located at the center of the 

Earth (see Fig. 1). Its plane x̂1- x̂2 is on the Earth’s equatorial 

plane, and (a) the position vector of the Sun moves on the 

plane x̂1- x̂3, (b) its x̂3 axis points towards the star Polaris. The 

orientation of its x̂1, axis is defined together with the initial 

value (at t* = 0) of the rotation angle . In this paper, we have 

assumed that at t* = 0, = 0 radians. We can further define 

two vectors, the vector x̂obs(t*), which is the position vector of 

an observer that is located at a certain fixed latitude d on the 

Earth’s surface, and the vector x̂*Sun(t*), which is the Sun’s 

position vector. Notice that the vector x̂obs(t*) rotates at the 

same angular velocity as the Earth. In the model, it is assumed 

that the Earth’s rotation angle  is 0 ≤  ≤ 2, where 2 radian 

corresponds to one day (24 hours or 86400 seconds), and the 
Corresponding author: ssraza@msn.com 
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dimensionless radius of the Earth is equal to one [1]. The 

increment of the rotation angle  (which corresponds to the 

time step t = 60 s of the numerical solution) is calculated as: 

ρ =
2π x 60

24 𝑥 3600
= 0.00436 radians                    (1) 

The dimensionless three components of the rotating vector 

x̂obs(t*) referred to the fixed Cartesian coordinate system (o, x̂) 

are given as: 

𝑥̂
1 obs 

∗ (𝑡∗) = cos 𝛿 cos 𝜌(𝑡∗) , 𝑥̂
2 obs 

∗ (𝑡∗) = cos 𝛿 sin 𝜌(𝑡∗) ,  

𝑥̂
3 obs 

∗ (𝑡∗) = sin 𝛿      (2a) 

and the dimensionless components of the Sun’s position 

vector x̂∗
Sun(t*), which oscillates from β(t∗) = -23.45o to β(t∗) 

= 23.45o on the plane x̂1- x̂3, are the following: 

𝑥̂
1sun 

∗ (𝑡∗) = cos 𝛽(𝑡∗) ,𝑥̂
2 sun 

∗ (𝑡∗) = 0, 𝑥̂
3 sun 

∗ (𝑡∗) =  sin 𝛽(𝑡∗) (2b) 

2.1  Solar elevation angle 

Solar elevation angle is the value that describes how high 

the Sun is. In order to calculate the solar elevation angle e, 

we transform (at each time step t*) the dimensionless 

components of the vector x̂*obs(t*), see Eq. (2a), into a new 

Cartesian coordinate system (o, x̂′1, x̂′2, x̂′3) which has the 

following characteristics (see Fig. 1): (i) its origin is located 

at the center of the Earth, (ii) its axis x̂′1 always points towards 

the Sun (that moves on the plane x̂1 - x̂3), (iii) its axis x̂′2 

always coincides with the axis x̂2 of the fixed Cartesian 

coordinate system (o, x̂), (iv) it oscillates (from (t*) = -23.45o 

to (t*) = 23.45o) about its axis x̂′2. The dimensionless 

components of the vector x̂′*obs(t*) are obtained by using the 

transformation rule explained below. 

 

Fig. 1 Cartesian coordinate system (o, x̂′1, x̂′2, x̂′3), whose origin is located 

at the center of the Earth. Its axis x̂′1 always points towards the Sun. 

Its axis x̂′2 always coincides with the axis x̂2 of the fixed Cartesian 

coordinate system o, x̂. It oscillates, from (t*) = -23.45o to (t*) = 

+23.45o, about its axis x̂′2. 

[

𝑥̂
1 obs 

′∗ (𝑡∗)

𝑥̂
2 obs 

′∗ (𝑡∗)

𝑥̂
3 obs 

′∗ (𝑡∗)

] = 

[

cos 𝛽(𝑡∗) 0 cos (90𝑜 − 𝛽(𝑡∗))

0 1 0
cos (90∘ + 𝛽(𝑡∗)) 0 cos 𝛽(𝑡∗)

] [

𝑥̂
1 obs 

∗ (𝑡∗)

𝑥̂
2 obs 

∗ (𝑡∗)

𝑥̂
3 obs 

∗ (𝑡∗)

] (3) 

 

Fig. 2 The solar zenith angle z and the solar elevation angle e. 

In vector form and using Eq. (2a), the Eq. (3) can be 

written as:   

x̂𝑜𝑏𝑠
′∗ (𝑡∗) = (cos 𝛽(𝑡∗) cos 𝛿 cos 𝜌(𝑡∗) + cos (90∘ − 𝛽(𝑡∗))sin 𝛿)î1

′

+ cos 𝛿 sin 𝜌(𝑡∗)î2
′  

+(cos(90𝑜 + 𝛽(𝑡∗)) cos 𝛿 cos 𝜌(𝑡∗) + cos 𝛽(𝑡∗)sin 𝛿)𝐢̂3
′  (4) 

The dot product between the unit position vector of the 

observer x̂′*obs(t*) and the unit vector î′1 that points towards 

the Sun, is obtained as (see Fig. 2): 

x̂
obs 

′∗ (𝑡∗) ⋅ î1
′ = |x̂𝑜𝑏𝑠

′∗ (𝑡∗)||î1
′ | cos 𝛼𝑧 

= cos 𝛽(𝑡∗) cos 𝛿 cos 𝜌(𝑡∗) + sin 𝛽(𝑡∗)sin 𝛿        (5) 

where, the trigonometric identity cos (90∘ − 𝛽(𝑡∗)) =

sin 𝛽(𝑡∗) has been used. From Eq. (5) the solar zenith angle 

z is obtained as: 

𝛼𝑧 = cos−1 [cos 𝛽(𝑡∗) cos 𝛿 cos 𝜌(𝑡∗) + sin 𝛽(𝑡∗)sin 𝛿] (6) 

The solar elevation angle e is obtained as: 

𝛼𝑒 = 90∘ − 𝛼𝑧                 (7) 

2.2 The solar azimuth angle measured from north 

The solar azimuth angle is the value that describes in 

which direction of the Sun is from north of the observer’s 

horizon plane. The solar azimuth angle is obtained by 

performing two rotations of the Cartesian coordinate system 

(o, x̂1, x̂2, x̂3). After the two rotations (represented by the 

transformation matrices A and B) have been carried out 

(Fig.3) the unit vector 𝑖̂3̿ of the new Cartesian coordinate 

 

Fig. 3 Transformation matrices A and B from the Cartesian coordinate 

system o, x̂1, x̂2, x̂3 to the Cartesian coordinate system o, 𝑥̿1 𝑥̿2, 𝑥̿3. 
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system (o, 𝑥̿̂1 𝑥̿̂2, 𝑥̿̂3) coincides with the position vector of the 

observer x̂*obs(t*) see Eq. (2a), while the units vectors 𝑖̂1̿ and 

𝑖̂2̿ are directed to the east and north directions, respectively, of 

the observer. Note that the plane defined by the two unit 

vectors 𝑖̂1̿ and 𝑖̂2̿ is (in a natural way) the horizon plane of the 

observer. 

By performing this procedure, the Sun’s position vector 

x̂*Sun(t*), see Eq. (2b), that is defined in the coordinate system 

(o, x̂1, x̂2, x̂3), is transformed into the coordinate system (o, 𝑥̿̂1 

𝑥̿̂2, 𝑥̿̂3). The angle between the unit vector, 𝑖̂2̿, that is directed 

to north of the observer, and the projection of the vector 

x̿̂*Sun(t*), on the plane 𝑖̂1̿ -  𝑖̂2̿ is the solar azimuth angle, a. 

2.2.1  The transformation matrices A and B 

The first rotation is about the axis x̂3 of the coordinate 

system (o, x̂1, x̂2, x̂3). If the rotation angle is 90o + (t*), the 

first transformation matrix A is as follows: 

A = [
−sin 𝜌(𝑡∗) cos 𝜌(𝑡∗) 0

−cos 𝜌(𝑡∗) −sin 𝜌(𝑡∗) 0
0 0 1

]   (8) 

 

Fig. 4 The observer position vector 𝑥̿*obs(t*), the Sun position vector  

𝑥̿*Sun(t*) and the solar zenith angle z in the Cartesian coordinate 

system o, 𝑥̿1, 𝑥̿2, 𝑥̿3. 

 

Fig. 5 The observer position vector 𝑥̿*obs(t*), the Sun position vector 

𝑥̿*sun(t*) and the solar azimuth angle measured from north a in the 

Cartesian coordinate system o, 𝑥̿1, 𝑥̿2, 𝑥̿3. The observer horizon plane 

is defined by the plane  𝑥̿1 - 𝑥̿2, where 𝑥̿1 is the observer’s East while 

𝑥̿2 is the observer North. 

After the first rotation, the Cartesian coordinate system (o, 

𝑥̂1
̅̅̅, 𝑥̂2

̅̅ ̅, 𝑥̂3
̅̅ ̅ ) is obtained (top panel of Fig. 3). The second 

rotation is about the axis 𝑥̂1
̅̅̅ of the new coordinate system. If 

the rotation angle is 90o - , the second transformation matrix 

B is defined as follows: 

B = [
1 0 0
0 sin 𝛿 cos 𝛿
0 −cos 𝛿 sin 𝛿

]    (9) 

After the second rotation, the Cartesian coordinate system 

(o, 𝑥̿̂1, 𝑥̿̂2, 𝑥̿̂3) is obtained, see bottom panel of Fig. 3. Now, 

the axis 𝑥̿̂3 coincides with the position vector of the observer   

x̂*obs(t*), and the axes 𝑥̿̂1 and 𝑥̿̂2 define the observer’s horizon 

plane. The axis 𝑥̿̂1 is now directed towards the east, while the 

axis 𝑥̿̂2 is directed to the north of the horizon plane. 

The global transformation matrix from the coordinate 

system (o, x̂1, x̂2, x̂3) to the coordinate system (o, 𝑥̿̂1, 𝑥̿̂2, 𝑥̿̂3) is 

defined as R = BA, which is written as: 

R = BA = [

−sin 𝜌(𝑡∗) cos 𝜌(𝑡∗) 0

−sin 𝛿cos 𝜌(𝑡∗) −sin 𝛿sin 𝜌(𝑡∗) cos 𝛿

cos 𝛿cos 𝜌(𝑡∗) cos 𝛿sin 𝜌(𝑡∗) sin 𝛿

] (10) 

The next step is to transform the Sun’s position vector 

x̂*Sun(t*), see Eq. (2b), into the new coordinate system (o, 𝑥̿̂1, 

𝑥̿̂2, 𝑥̿̂3), hence the following transformation is carried out: 

𝑥̿̂Sun 
(𝑡∗) = [

−sin 𝜌(𝑡∗) cos 𝜌(𝑡∗) 0

−sin 𝛿cos 𝜌(𝑡∗) −sin 𝛿sin 𝜌(𝑡∗) cos 𝛿

cos 𝛿cos 𝜌(𝑡∗) cos 𝛿sin 𝜌(𝑡∗) sin 𝛿

] [
cos 𝛽(𝑡∗)

0
sin 𝛽(𝑡∗)

] (11) 

or, 

𝑥̿Sun 
(𝑡∗) =  [

− sin 𝜌(𝑡∗) cos 𝛽(𝑡∗)

− sin 𝛿 cos 𝜌(𝑡∗) cos 𝛽(𝑡∗) + cos 𝛿 sin 𝛽(𝑡∗)

cos 𝛿 cos 𝜌(𝑡∗) cos 𝛽(𝑡∗) + sin 𝛿 sin 𝛽(𝑡∗)
]            (12) 

From the three components of the vector x̅̅̂𝑆𝑢𝑛
∗  (𝑡∗), the 

solar zenith angle, z (hence the elevation angle e), see      

Fig. 4, and the solar azimuth angle measured from north of the 

observer’s horizon (see Fig. 5) are obtained.  

The third direction cosine of the vector x̅̅̂𝑆𝑢𝑛
∗  (𝑡∗) see Eq. (12), 

represents the cosine of the angle between the position vector 

of the observer and the Sun’s position vector, that is, the 

cosine of the zenith angle z, which has been previously 

evaluated, see Eq. (6). The solar azimuth angle measured from 

north of the observer’s horizon is obtained by taking the 

tangent of the angle measured from the axis 𝑥̿̂2 (north 

direction) to the projection of the vector 𝐱̅̅̂𝑆𝑢𝑛
∗  (𝑡∗) on the plane 

𝑥̿̂1 - 𝑥̿̂2 that is: 

tan 𝛼𝑎 =
𝐱̅̅̂1 𝑆𝑢𝑛

∗ (𝑡∗)

𝐱̅̅̂2 𝑆𝑢𝑛
∗ (𝑡∗)

              (13) 

hence, the solar azimuth angle measured from north (i.e. 

a), see Eq. (12), is given as 

𝛼𝑎 = tan−1 {
−sin 𝜌(𝑡∗)cos 𝛽(𝑡∗)

cos 𝛿sin 𝛽(𝑡∗)−sin 𝛿cos 𝜌(𝑡∗)cos 𝛽(𝑡∗)
}      (14) 
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In Fig. 6, a two dimensional map is showing the solar 

azimuth angle a at the abscissa and the solar elevation angle, 

e at the ordinate, for four days (March 20, June 21, 

September 19 and December 21) of the year 2013, 

corresponding to a latitude  = 40.73o. The declination angle 

() is used to calculate the angles a and e. The declination 

angle (β) at the beginning of the day and at the end of the day 

(see the values of Declin. start and Declin. end), as well as the 

sunrise and the sunset regions, are displayed in each panel of 

Figure. Notice that for the latitude  = 40.73o (and for the 

locations on the Earth’s northern hemisphere with latitude 

greater than 23.45o) the Sun is always south of the place (see 

the values of Declin. start and Declin. end in Fig. 6), hence 

the solar azimuth angle a measured from north of the 

observer’s horizon plane at noon is always a = 180o (south 

direction of the observer’s horizon plane). In Fig. 6, it is 

observed that the sunrise region is located in the interval 0o < 

a < 180o (north-east-south direction of the observer’s horizon 

plane), while the sunset region is in the interval between 180o 

< a < 360o (south-west-north direction of the observer’s 

horizon plane). The elevation angle e (e  0o) is measured 

from the location at which a is evaluated. Then in Fig. 6, if 

a is lower than 90o or if a is greater than 270o, the Sun is 

north of the observer’s horizon plane and e is measured from 

north of this plane. On the other hand, if a is in the interval  

90o < a < 270o the Sun is south of the observer’s horizon 

plane, then e is measured from south of this plane. However, 

for the locations on the Earth’s north hemisphere with latitude 

 < 23.45o (not shown here), in some dates of the year, the 

Sun is north of the place, hence the physical interpretation of 

the angles e and a is different. That is, when the Sun is north 

of the place, the solar azimuth angle measured from north of 

the observer’s horizon plane is in the interval -90o < a < 90o 

degrees. Where, the interval from 90o to 0o corresponds to the 

region from sunrise to noon, while the interval from 0o to -90o 

corresponds to the region from noon to sunset.  

3. Equation of Time 

The results of the Sun’s position in the sky of an observer, 

presented in the previous sections, are not fully correlated 

with the observations of one person that attempts to see the 

position of the Sun at the same clock time every day along the 

year. This observer will notice that the Sun is not at the same 

position in the sky. The reason is that the clock time is based 

on a standard measure that considers a fictitious Earth that 

travels around the Sun in a circular trajectory with constant 

tangential velocity (hence with constant angular velocity). 

Additionally, the standard measure of time (clock time) takes 

into account that the Sun is always located at the Earth’s 

equator. As it was previously shown, the trajectory of the true 

Earth is elliptical, and its tangential velocity vt as well as the

  

  

Fig. 6 Map of the solar azimuth angle is measured from north of the observer’s horizon plane a (see Eq. 14) and the solar elevation angle e is calculated 

from Eq. (7). The observer is located at a latitude = 40.73o. Four days of the year 2013 are shown. The number of the day along the year, the sunrise, 

and the sunset regions are displayed. The declination angle β at the beginning of the day in degrees (Declin. start) and the declination angle  at the 

end of the day in degrees (Declin. end) are also displayed. The legend Sun is south, means that the declination angle  is lower than the latitude of the 

place = 40.73o. 
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Sun’s position relative to the Earth’s equator (the declination 

angle ), are both functions of time. The difference between 

the standard measure of time (clock time) and the Sun’s 

position in the sky of an observer (solar time) is known as the 

equation of time or also called correction of time. 

3.1 Standard measure of time (clock time) 

In the standard measure of time model, it is assumed that 

a fictitious Earth with constant angular velocity Circ follows 

a circular trajectory. The angular velocity Circ is given by:  

Circ = 360/365 = 0.98630136 [Degrees/day]    (15a) 

or,     

Circ = 360/365 × 1/24 ×1/60 = 0.0006849315 [Degrees/min]  (15b) 

where, [Degrees] is the unit of angle measured along the 

circular trajectory. 

In the standard measure of time, it is also assumed that the 

fictitious Earth’s angular velocity Circ about its rotation axis, 

which is normal to the ecliptic plane, is 360 degrees per day, 

or: 

Circ = 360/24 ×1/60 = 0.25 [degrees/min]                  (16) 

where, [degrees] is the unit of angle of the fictitious 

Earth’s rotation about its axis. In the clock time model, it is 

assumed that the position of the Sun relative to the position of 

an observer is exactly the same each 24 hours (i.e. each 360 

degrees or each 0.98630136 Degrees). The Sun’s position 

relative to the observer in the circular trajectory is evaluated 

by considering that the fictitious Earth travels on a circle with 

unit radius R. At the center of the circle is the Sun. As shown 

in Fig. 7, the origin of the fixed coordinate system (O, X1, X2) 

is located at the center of the circle (at the Sun’s position), 

while the origin of the moving and locally rotating coordinate 

system (o, x1, x2) is located at the Earth’s position XE(t). 

 

Fig. 7 Circular trajectory of the fictitious Earth: two Cartesian coordinate 

systems are defined. The fixed coordinate system (O, X1, X2) whose 

origin is located at the center of the circle with unit radius R (at the 

Sun’s position), and the moving and rotating coordinate system (o, 

x1, x2), whose origin is located along the circle, i.e. at the Earth’s 

position vector XE(t) = R cos (Circ t) I1+R sin(Circ t) I2. The axis x1 

always is directed to the Sun, hence it is in the same direction of the 
vector XE(t). 

 

Fig. 8 Circular trajectory of the fictitious Earth: the moving coordinate 

system (o, x1, x2), rotates by an angle Circ t. In the moving 

coordinate system, the position of an observer on the fictitious Earth 

surface is given as xobs(t) = rf cos ((Circ+ Circ)t) i1 + rf sin((Circ 

+ Circ)t) i2, where rf is the unit radius of the fictitious Earth. 

In the fixed coordinate system the position vector of the 

Earth is defined as: 

X𝐸(𝑡) = 𝑅cos (ΩCirc 𝑡) I1 + 𝑅sin (ΩCirc 𝑡) I2,         (17) 

where, I1 and I2 are the unit vectors of the fixed coordinate 

system and t is the elapsed time in minutes. In the fictitious 

Earth model, it is assumed that the coordinate system (o, x1, 

x2) is also rotating an angle Circ t, in such a way that the axis 

x1 is always in the direction of the vector XE(t), see Figs. 7 

and 8. In the moving and rotating coordinate system, the 

position of an observer on the fictitious Earth’ surface is given 

as: 

xobs 
(𝑡) = 𝑟𝑓 cos ((𝜔Circ + ΩCirc )𝑡) i1 + 𝑟𝑓 sin ((𝜔Circ + 𝛺Circ )𝑡) 𝑖2 (18) 

where, i1 and i2 are the unit vectors of the moving and 

rotating coordinate system and rf is the unit radius of the 

fictitious Earth. In the fixed coordinate system (O, X1, X2), the 

position vector Xobs(t) of the observer can be evaluated 

through the use of the two components of the position vector 

xobs(t) (see Eq. 18), which are defined on the surface of the 

fictitious Earth and in the coordinate system (o, x1, x2). The 

position vector Xobs 
(𝑡) =  X𝐸(𝑡) − xobs 

(𝑡) (see Fig. 8), is 

calculated as: 

Xobs (𝑡) = (𝑅cos (ΩCirc 𝑡) − 𝑟𝑓cos ((𝜔Circ + ΩCirc )𝑡)) I1   

+ (𝑅sin (ΩCirc 𝑡) − 𝑟𝑓sin ((𝜔Circ + ΩCirc )𝑡)) I2  (19) 

Now, in the fixed Cartesian coordinate system we have the 

following three vectors: XE(t), Xobs(t) and XE−obs. The last 

vector is the relative vector from the center of the fictitious 

Earth to the observer. The relationship between the three 

vectors (that is X𝐸−𝑜𝑏𝑠(𝑡) = Xobs (𝑡) − X𝐸(𝑡)), is given as 

follows: 

X𝐸−𝑜𝑏𝑠(𝑡) = 

−𝑟𝑓 cos ((𝜔Circ + ΩCirc )𝑡) I1 − 𝑟𝑓 sin ((𝜔Circ + 𝛺Circ )𝑡) 𝐼2    (20) 
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3.2 First component of the equation of time: correction 

due to eccentricity of the Earth’s orbit 

It is clear from the previous discussion that the true Earth 

(that moves in an elliptical trajectory) has an angular velocity 

(𝛺Ell 
(𝑡) = 𝑑𝜃(𝑡) 𝑑𝑡⁄ ), that is not a constant. As presented 

earlier, two Cartesian coordinate systems are defined to 

represent the elliptical path of the true Earth. It is assumed that 

the rotation axis of the true Earth is normal to the ecliptic 

plane. The origin of the fixed coordinate system (O, X1, X2) 

is located at the focus of the ellipse (at the Sun’s position), 

while the origin of the moving coordinate system (o, x1, x2) is 

located at the center of the Earth that is moving along its 

elliptical orbit. In the fixed coordinate system the position 

vector of the true Earth is given as: 

X𝐸(𝑡) = 𝑟∗(𝑡)cos 𝜃(𝑡)I1 + 𝑟∗(𝑡)sin 𝜃(𝑡)I2,              (21) 

where, r*(t) is the dimensionless polar coordinate. If we 

assume that the moving coordinate system also rotates as a 

function of time (i.e the angle (t)), it is explicitly considered 

that the axis x1 is always in the direction of the vector XE(t), 

then the position of the observer on the surface of the true 

Earth is given as:   

xobs (𝑡) = 𝑟𝑡cos (𝜔Circ 𝑡 + 𝜃(𝑡))i1 + 𝑟𝑡sin (𝜔Circ 𝑡 + 𝜃(𝑡))i2,     (22) 

where, rt is the unit radius of the true Earth. In the fixed  

coordinate system (O, X1, X2), the coordinates of the observer, 

which are defined in the moving coordinate system (see Eq. 

22), are obtained as: 

Xobs 
(𝑡) = X𝐸(𝑡) − xobs 

(𝑡) 

= (𝑟∗(𝑡)cos 𝜃(𝑡) − 𝑟𝑡cos (𝜔Circ 𝑡 + 𝜃(𝑡))) I1 +

(𝑟∗(𝑡)sin 𝜃(𝑡) − 𝑟𝑡sin (𝜔Circ 𝑡 + 𝜃(𝑡))) I2.
       (23) 

In the fixed Cartesian coordinate system we have the three 

vectors: XE(t), Xobs(t) and XE−obs. It is worth mentioning that 

the graphs, as a function of time, of the vectors defined by 

Eqs. (21)-(23), confirm again the fact that the observer (even 

if the trajectory is elliptical with variable angular velocity 

Ell(t)) sees, along the year, the Sun at the same position at 

the same hour of the day, as it was the case of the circular 

trajectory with constant angular velocity circ. The reason of 

this behavior of the position vectors XE(t), Xobs(t) and XE−obs, 

in both cases (the fictitious Earth and the true Earth) is 

because the moving coordinate system (o, x1, x2), whose axis 

x1 is always in the same direction of the vector XE(t), is 

rotating with an angular velocity (either circ or Ell), which 

is the same as the angular velocity of the Earth’s trajectory 

(either circular or elliptical). 

The first part of the Equation of Time is calculated by 

using the following equation: 

Δ𝑡first =
ΩCirc 𝑡−𝜃(𝑡)

𝜔Circ 

≡ [ minutes ]                  (24) 

In Fig. 9, the left panel shows the first component of the 

Equation of Time (correction due to the eccentricity of the 

Earth’s orbit). The angle (t) in Eq. (24) is obtained by using 

the polar angle (t), which is the independent variable, and the 

PSA algorithm (for the year 2013), in which instead of using 

the polar angle (t), the ecliptic longitude θ̂ is used. In the 

PSA algorithm, instead of using the angle spanned by the 

fictitious Earth, Circ t, the mean longitude L is used, while in 

the analytical approach, the time t in the expression Circ t, is 

obtained by the analytical solution. In the left panel of Fig. 9, 

it is observed that when the Earth is close to the Sun (January, 

February), the first component of the Equation of time is 

negative, i.e. the angular velocity of the true Earth (𝛺Ell (𝑡) =

𝑑𝜃(𝑡) 𝑑𝑡⁄ ) is higher than the constant angular velocity of the 

standard fictitious Earth (Circ), as it was shown in the results 

of our imaginary scenery. However, when the Earth is far 

from the Sun (July, August) the angular velocity of the true 

Earth is lower than that of the fictitious Earth, then the first 

correction to the Equation of time is positive. 

3.3  Second component of the equation of time: correction 

due to the Earth’s rotation axis tilt 

The correction of time due to the tilt of the Earth’s rotation 

axis relative to the ecliptic plane, is based on the variation, 

with respect to the time of the declination angle (t). In order 

to understand the contribution of the tilt angle on the equation 

of time, we propose a model based on two Earths: (1) the

 

Fig. 9. The Equation of Time. Left panel: correction due to the eccentricity of the Earth’s orbit, see Eq. (24); PSA algorithm results for 2013, and analytical 

results (see text). Middle panel: correction due to the tilt (obliquity) of the Earth’s rotation axis from the normal to the ecliptic plane. Right panel: the 
Equation of Time as the sum of the two corrections shown in the left and middle panels, see Eq. (35).  
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standard fictitious Earth, and (2) the true Earth. In this model, 

it is assumed that as the Earth rotates about its rotation axis, 

Sun draws a curved line on the surface of each Earth. On one 

hand, in the fictitious Earth, it is assumed that, for a certain 

initial condition (noon of one selected day, that is when  = 0 

radians), the latitude angle β̂ (which is the value of the 

declination angle (t) at noon of the selected day) remains 

constant as the Earth rotates about its rotation axis, from noon 

of the selected day to noon of the next day (that is from  = 0 

radians to  = 2 radians). Along this fictitious day, it is 

apparent that the Sun generates on the surface of the Earth, a 

closed circular path that is parallel to the Earth’s equatorial 

plane. The radius r̂ (that is normal to the fictitious Earth’s 

rotation axis) of this closed circular path is given as: 

𝑟̂ = 𝑟𝑓cos 𝛽̂,                                      (25) 

where, rf is the unit radius of the fictitious Earth. Then, 

after 24 hours, from noon of the selected day, and maintaining 

constant the latitude angle β̂, the Sun has traveled on the 

surface of the fictitious Earth a total circular distance d̂f ict 

given by  

𝑑̂fict = 2𝜋𝑟̂ = 2𝜋𝑟𝑓cos 𝛽̂                          (26) 

On the other hand, the closed curved path of the Sun on 

the surface of the true Earth is governed, not only by the 

longitude angle (t), but also by the declination angle (t). For 

the true Earth model, let us assume again as initial condition, 

that at noon (that is when = 0 radians) of the day that was 

selected for the fictitious Earth, the Sun is at the declination 

angle (t), that is equal to the latitude angle β̂ of the fictitious 

Earth (which remains constant until the next noon). Then, 

between two times t1and t2 (where t = t2 - t1=1 minute, 

corresponds to the time increment that the Sun’s position (on 

the surface of the true Earth), has changed, not only due to the 

rotation of the Earth (given by the angle (t)), but also due to 

the variation of the declination angle (t). To calculate the 

Sun’s curved path on the surface of the true Earth between the 

two points P1 (at t1) and P2 (at t2), the spanned angle 12 (the 

central angle) between these two points is evaluated either as: 

𝜎12 = cos−1 (sin 𝛽1sin 𝛽2 + cos 𝛽1cos 𝛽2cos (𝜌2 − 𝜌1)),  (27) 

or as: 

𝜎12 = 2sin−1 (
𝐶

2
)             (28) 

where, the variable C is given as: 

𝐶 = √(Δ𝑋)2 + (Δ𝑌)2 + (Δ𝑍)2                     (29) 

and 

Δ𝑋 = cos 𝛽2 cos 𝜌2 − cos 𝛽1 cos 𝜌1, 

Δ𝑌 = cos 𝛽2 sin 𝜌2 − cos 𝛽1 sin 𝜌1 ,
 

Δ𝑍 = sin 𝛽2 − sin 𝛽1
     (30) 

The sub-indexes 1 and 2 mean that the angles (t) and (t) 

are evaluated at the times t1 and t2, respectively. The longitude 

angle spanned by the Earth’s rotation after 1 minute is given 

by = 2 -1= 0.00436 radians ≡ 0.25 degrees. 

The distance d12 (arc length) traveled by the Sun on the 

surface of the true Earth, between the two points P1 and P2, is 

obtained as: 

𝑑12 = 𝑟𝑡𝜎12,             (31) 

where, rt is the unit radius of the true Earth. Then, after 24 

hours (or after r=2 radians), the Sun has generated on the 

surface of the true Earth an helical (spiral) closed curved path 

whose total length d̂true is given by the sum of each of the small 

distances d12, traveled by the Sun, between each pair of points 

P1 and P2. As t = 1 minute, one day is constituted by 1440 

time increments, hence along one day we have np=1440 pair 

of points P1 and P2. Hence, the total helical (spiral) distance 

traveled by the Sun on the surface of the true Earth (along 

1440 minutes), is given as: 

𝑑̂true = ∑  
𝑛𝑝
𝑖=1 𝑑𝑖

12                            (32) 

In the previous analysis, it has been considered that the 

radii rf (see Eq. 26) and rt (see Eq. 31) of both Earths is unitary, 

then both of the distances d̂fict and d̂true are expressed in 

radians, hence the difference d̂diff = d̂fict - d̂true must be 

converted to minutes by using the following relationship: 

𝑑̂diff = (𝑑̂fict − 𝑑̂true ) [ radians ] 

= (
24

2𝜋
) (60) (𝑑̂fict − 𝑑̂true ) ≡ [ minutes ]                      (33) 

Consequently, the time correction due to the Earth’s 

rotation axis tilt for one day that begins at (t)=0 radian, and 

at 𝛽̂ = 𝛽(𝑡) (for the fictitious Earth) and at 𝛽(𝑡) (for the true 

Earth), and finishes (after 24 hours or 1440 minutes) at 𝜌(𝑡) =

2𝜋 radians and at 𝛽̂ (for the fictitious Earth) and at the 

corresponding declination angle (t) for the true Earth, is 

given by the following equation: 

Δ𝑡second = 𝜋2𝑑̂diff ≡ [ minutes ]                   (34) 

where, the scaling factor π2 is introduced to reproduce the 

second component of the Equation of Time published in the 

literature. Middle panel of Fig. 9 shows the second component 

of the Equation of time (see Eq. 34) as a function of time (days 

of the year). It is observed that the second correction of time 

is zero for four days: the two equinoxes and the two solstices. 

In these particular days, the Sun generates on the surface of 

the true Earth, circular paths (not spirals) similar to the 

circular paths generated by the Sun on the surface of the 

fictitious Earth. In the middle panel of Fig. 9, it is also 

observed that when the Sun travels from south to north, from 

the March equinox, to the June solstice (that is from March 20 

to June 21), the daily spiral distance traveled by the Sun, d̂true 

on the surface of the true Earth, is smaller than the daily 

distance, d̂fict traveled by the Sun on the surface of the 

fictitious Earth, then the Sun on the true Earth, is ahead from 

the Sun on the fictitious Earth, hence the second correction of 

time tsecond is positive. The same situation appears when the 

Sun travels from north to south, from the September equinox 

to the December solstice (from Sept. 2019 to Dec.2021). 
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Fig. 10  Analemma for the year 2013. The Equation of Time, see Eq. (35) (as 

the abscissa) and the declination angle (t), as the ordinate. 

However, when the Sun is traveling from north to south, 

from the June solstice to the September equinox (that is from 

June 21 to September 19), the daily spiral distance traveled by 

the Sun, 𝑑̃true, on the surface of the true Earth, is greater than 

the daily distance d̂fict, traveled by the Sun on the surface of 

the fictitious Earth, then the Sun on the true Earth, is delayed 

with respect the Sun on the fictitious Earth, hence the second 

correction of time is negative. The same situation appears 

when the Sun travels from south to north, from the December 

solstice to the March equinox (from December 21 to March 

20). The sum of the times tfirst , see Eq. (24) and tsecond, see 

Eq. (34), is the so called Equation (correction) of Time given 

by: 

𝐸𝑂𝑇 = Δ𝑡first + Δ𝑡second ≡ [ minutes ]                  (35) 

This Equation of Time (EOT) is plotted in Fig. 9 (right 

most panel) as function of time (days along the year). 

4. Solar Analemma 

An analemma is a diagram showing the position of the Sun 

in the sky as seen from a fixed location on Earth at the same 

mean solar time. As the solar position varies over the course 

of a year, a line joining the solar position, for the same date 

and time of every month of the year resembles a figure like 8 

(eight) [2,3]. Figure 10 shows the graph of the solution of the 

Equation of Time, see Eq. (35) (as the abscissa) and the 

declination angle, (t) (as the ordinate) at noon ( = 0 radians) 

of each day along the year 2013 to yield the corresponding 

analemma. Note that the analemma of Fig. 10, does not 

depend on the latitude at which an observer is located on the 

Earth’s surface. Fig. 11, shows the analemma calculated for 

an observer located at the latitude =40.73o for the year 2013. 

Left panel shows the analemma at 10:00 A.M., middle panel 

shows the analemma at noon, and the right panel shows the 

analemma at 4:00 P.M. It is important to point out that the 

solar azimuth angle shown as the abscissa in the panels of Fig. 

11, is the modified solar azimuth angle 𝛼̂a. This angle is 

obtained by correcting Eq. (14) with the Equation of Time 

(EOT) (see Eq. 35). That is, the abscissa of the analemma of 

Fig. 11, is obtained by using the following relationship: 

𝛼̂a = 𝛼a + (0.25) EOT                               (36) 

where, the coefficient 0.25 is the conversion factor from 

minutes to degrees. 

5. Results and Discussion 

In an earlier companion paper diverse computational 

methodologies were presented to calculate the trajectory of 

the Sun in the sky of an observer located on the Earth’s 

surface. In this paper, the location of the North Star has been 

successfully calculated in a Cartesian coordinate system, 

which is a familiar coordinate system for the engineers. 

Additionally, the position vector from the Earth to the Sun, 

(t) and the declination angle, (t) as functions of time, were 

obtained by using an engineering approach. Standard 

transformations of the involved vectors (the position vector of 

the observer and the Sun’s position vector) have been 

obtained by performing simple rotations of the Cartesian 

coordinate system. The horizon plane of the observer, the 

solar zenith angle z, the solar elevation angle e, and the solar 

azimuth angle measured from north of the observer’s horizon 

plane a have been obtained by using the proposed simple 

engineering approach. It has been pointed out that when the 

Sun is north of the observer, a different interpretation of the

 

Fig. 11 Analemma for the year 2013. The observer is located at a latitude =40.73o. The solar azimuth angle measured from north a (degrees), see Eq. (14), 

as the abscissa and the solar elevation angle e (degrees), see Eq. (7), as the ordinate. Left panel: Analemma at 10:00 A.M. Middle panel: 

Analemma at noon. Right panel: Analemma at 4:00 P.M. 



R. Avila et al. / The Nucleus 61, No. 1 (2024) 22-30 

30 

solar azimuth angle is needed, that is, when the declination 

angle (t) is greater than the latitude of the observer , the 

solar azimuth angle a(t) must be defined within the interval 

-90 o < a(t) < 90 o 

The two components of the Equation of Time have been 

explained in detail (from the physical point of view), and a 

new relationship to obtain the correction of time due to the 

Earth’s rotation axis tilt has been presented. 

For a graphic representation of the Equation of Time, see 

Fig. 9, and for a plot of the solar declination angle as a 

function of time, see Fig. 10. 

The analemma for three distinct hours of the day (of the 

year 2013), for an observer located at the Earth’s latitude = 

40.73o have been shown (see Fig. 11, corresponding to the 

New York city). The methodology presented here can be 

easily applied to other latitude locations and other calendar 

years. 

The information included in this paper should be 

considered as an important source of reference for the solar 

energy engineers, who need to accurately know the position 

of the Sun throughout the year. The equations presented in 

this paper can be easily used by engineers instead of the 

sophisticated mathematical equations used by astronomers 

and astrophysicist. 
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