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A B S T R A C T 

This study addresses the challenge of accurate object detection in foggy environments, a critical issue in computer vision. We propose a novel approach 

using a real dataset collected from diverse foggy weather conditions, focusing on varying fog densities. By annotating the dataset from Real-Time Traffic 

Surveillance (RTTS) and using the YOLOv8x architecture, we systematically analyze the impact of fog density on detection performance. Our experiments 
demonstrate that the YOLOv8x model achieves a mean average precision (mAP) of 78.6% across varying fog densities, outperforming state-of-the-art 

methods by 4.2% on the augmented dataset. Additionally, we show that increased dataset diversity significantly enhances the robustness of the model in 

detecting objects under challenging foggy conditions. Our research contributes to advancing object detection systems tailored for foggy environments, with 
implications for safety and efficiency in domains like autonomous driving and surveillance. 
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1. Introduction  

In recent years, the field of computer vision has 

experienced a profound transformation, largely fueled by the 

advancements in deep learning techniques, a subset of 

artificial intelligence, has emerged as a dominant force 

revolutionizing various domains, including healthcare, 

finance, and notably, computer vision. With its ability to 

automatically learn hierarchical representations from data, 

deep learning has enabled unprecedented breakthroughs in 

tackling complex visual recognition tasks. One of the most 

pivotal applications of computer vision is object detection, a 

fundamental process essential for numerous real-world 

applications ranging from autonomous vehicles to 

surveillance systems. 

The advent of deep learning models, particularly 

convolutional neural networks (CNNs), has propelled object 

detection to new heights, enabling remarkable levels of 

accuracy and efficiency. Models such as YOLO (You Only 

Look Once) have gained widespread adoption due to their 

ability to perform real-time object detection with impressive 

accuracy [1]. These advancements have significantly 

enhanced the capabilities of various systems, empowering 

them to detect and recognize objects with unprecedented 

precision and speed. 

However, despite the significant strides made in object 

detection, challenges persist, especially when confronted 

with adverse environmental conditions such as foggy 

weather. Fog significantly challenges the traditional 

computer vision systems, impairing visibility and 

complicating the detection of objects within the scene. The 

scattering and absorption of light by fog particles lead to 

reduced contrast and clarity, making it challenging for 

conventional algorithms to accurately identify and localize 

objects. As a result, there is a pressing need to develop 

robust object detection techniques to work well in foggy 

conditions.  

Existing research has predominantly relied on synthetic 

datasets generated to simulate foggy conditions artificially. 

While these datasets have been valuable for benchmarking 

and initial experimentation, they often fail to capture the full 

complexity and variability of real-world fog conditions. 

Furthermore, many studies have overlooked the crucial 

aspect of fog density, which plays a significant role in 

determining the severity of visibility impairment. 

Consequently, there is a gap in the literature concerning the 

impact of fog density on object detection performance, 

necessitating further investigation. 

To address these challenges and limitations, this research 

proposes a novel approach that leverages a real dataset 

captured under diverse foggy weather conditions. By 

incorporating real-world data and systematically analyzing 

fog density levels, this study aims to provide a 

comprehensive understanding of the challenges posed by 

foggy weather and develop effective solutions to enhance 

object detection performance. Additionally, the research will 

utilize state-of-the-art deep learning architectures, such as 

YOLOv8, known for their robustness and efficiency in 

object detection tasks, to develop tailored solutions 

optimized for foggy conditions. 

Through this research endeavor, we seek to advance the 

state-of-the-art in object detection systems, particularly in 

the context of adverse weather conditions. By bridging the 

gap between synthetic simulations and real-world scenarios 

and considering the nuanced effects of fog density, we aim 

to develop robust and reliable object detection models 

capable of operating effectively in foggy weather, with 

implications for various applications, including 

transportation, surveillance, and environmental monitoring. 
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1.1 Effects of fog on object detection 

Fog, a meteorological phenomenon characterized by 

suspended water droplets or ice crystals in the atmosphere, 

poses a formidable obstacle to conventional object detection 

algorithms. The presence of fog results in a visual 

impairment that severely diminishes visibility and obscures 

objects in the scene. This impairment not only compromises 

the efficacy of traditional object detection methodologies but 

also hampers critical applications across various domains, 

including transportation, surveillance, and environmental 

monitoring. 

When fog occurs, it scatters and absorbs light, leading to 

reduced contrast and clarity in the captured images. This 

scattering phenomenon causes light to disperse in multiple 

directions, resulting in a diffuse illumination that blurs the 

edges of objects and diminishes their contrast against the 

background. As a result, objects appear hazy and indistinct, 

making them challenging to detect and localize accurately. 

Moreover, the attenuation of light by fog particles further 

exacerbates the degradation of image quality like you can 

see in Fig 1. As light passes through the fog, it is absorbed 

and scattered by the water droplets or ice crystals present in 

the atmosphere. This absorption and scattering process 

diminishes the intensity of light reaching the camera sensor, 

leading to overall dimness and loss of detail in the captured 

images. Consequently, objects in the scene may become 

partially or entirely obscured, further complicating their 

detection and recognition. 

The adverse effects of fog on image quality are 

particularly pronounced in long-range visibility scenarios, 

where fog density is higher. In such conditions, objects 

located at a distance from the observer are shrouded in 

thicker layers of fog, resulting in greater attenuation and 

scattering of light. As a consequence, distant objects may 

become completely obscured from view, posing significant 

challenges for object detection systems reliant on clear 

visual cues.  

The detrimental impact of fog on object detection 

extends beyond mere visual impairment. In critical 

applications such as transportation and surveillance, accurate 

and timely detection of objects is paramount for ensuring 

safety and security. However, the presence of fog introduces 

uncertainties and delays in the detection process, 

jeopardizing the reliability and effectiveness of these 

systems. 

In light of these challenges, there is a pressing need to 

develop robust object detection techniques capable of 

operating effectively in foggy conditions. By addressing the 

unique challenges posed by fog-induced visual impairment, 

such techniques hold the potential to enhance the resilience 

and performance of object detection systems across various 

real-world applications. 

 The Figure 1 illustrates the degradation in image 

quality caused by foggy conditions. The top row shows 

original images captured in different environments under 

clear weather conditions. The middle row depicts depth 

maps corresponding to these scenes, highlighting the 

distance of objects in the environment. The bottom row 

demonstrates the same scenes under simulated foggy 

conditions, where visibility is significantly reduced, and 

object detection becomes more challenging. These examples 

emphasize the importance of advanced techniques for 

enhancing visibility and object detection in foggy 

environments. 

 

Fig. 1 Effect of fog on image quality [2] 

1.2 Importance of accurate object detection in foggy 

conditions 

In the realm of autonomous driving, ensuring passenger 

and pedestrian safety hinges on the accurate detection of 

pedestrians, vehicles, and obstacles, particularly under 

adverse weather conditions such as fog. Fog significantly 

impairs visibility, making it challenging for autonomous 

vehicles to perceive and respond to objects in their 

environment. Accurate object detection in foggy conditions 

is therefore paramount for autonomous driving systems to 

make informed decisions and navigate safely through 

challenging scenarios [1]. 

Similarly, in surveillance systems, the ability to discern 

objects obscured by fog is indispensable for maintaining 

security and preventing potential threats. Foggy weather 

conditions can provide cover for malicious activities, as 

objects and individuals may be obscured from view. Reliable 

object detection algorithms capable of penetrating through 

fog can aid in the early detection of suspicious behavior and 

facilitate timely intervention by security personnel. 

Furthermore, in environmental monitoring applications, 

accurate detection of objects such as wildlife or hazardous 

materials amidst foggy conditions is crucial for timely 

intervention and mitigation. Fog can obscure important 

environmental features and impede the detection of critical 

objects, posing risks to both human safety and ecosystem 

health. By leveraging advanced object detection techniques 

tailored for foggy environments, environmental monitoring 

systems can enhance their ability to detect and respond to 

potential threats, safeguarding ecosystems and human 

populations alike. 
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2. Related Work 

2.1 Object detection in foggy weather  

Hasan Abbasi et al. [3] introduced an object detection 

algorithm specifically designed for adverse weather 

conditions, with a focus on foggy environments. The 

proposed method, termed Fog-Aware Adaptive YOLO [3], 

incorporates HDE (image-adaptive YOLO) and IA-YOLOv3 

to address the challenges posed by reduced visibility in 

foggy conditions. The evaluation of the Fog-Aware Adaptive 

YOLO algorithm is performed on the VOC dataset, a widely 

used benchmark for object detection tasks. The reported 

mean Average Precision (mAP) of 70.43% [3] highlights the 

algorithm's effectiveness in detecting objects under adverse 

weather conditions. 

 In recent years, significant strides have been made in 

enhancing object detection capabilities for autonomous 

driving, particularly in challenging weather conditions such 

as fog and rain. Jinlong Li, et al. [1] present a notable 

exploration in this domain, focusing on the development of 

robust detection models capable of operating effectively in 

adverse weather scenarios. The selected methodology for 

domain adaptation in this context is the Adversarial Gradient 

Reversal Layer (AdvGRL), which represents a promising 

approach to addressing the challenges posed by varying 

environmental conditions. The application of AdvGRL in the 

work of Jinlong Li et al. underscores the increasing 

recognition of the importance of robust detection models that 

can generalize well across diverse weather conditions. 

AdvGRL leverages adversarial training to align feature 

distributions between the source domain (Cityscapes) and 

the target domains (Foggy Cityscapes and Rainy 

Cityscapes). The reported result of a mean Average 

Precision (mAP) of 42.3% [1] indicates promising 

performance in object detection under adverse weather 

conditions.  

   Debasis Kumar and Naveed Muhammad [4] present a 

study focused on enhancing object detection in adverse 

weather conditions for autonomous driving through the 

utilization of a combination of YOLOv8 architecture and 

data merging techniques. The evaluation of the proposed 

approach is conducted using the ACDC and DAWN 

datasets, providing a comprehensive assessment of model 

performance across various object categories, the YOLOv8 

model with data merging techniques demonstrates promising  

results in object detection, achieving an overall mean 

Average Precision (mAP) of 0.74 [4]. Furthermore, the 

reported mAP values for specific object categories are as 

follows [4]: bike (0.3), person (0.69), bicycle (0.64), truck 

(0.7), and traffic light (0.7).  

  Yonghua Shi and Xishun Jiang [5] introduced a novel 

approach employing a conditional generative adversarial 

network (cGAN) for the purpose of defogging aerial images. 

The dataset used for evaluation comprises 3400 high-

resolution fogged scene images sourced from the internet. 

The proposed method achieves significant quality 

improvement, as evidenced by quantitative metrics. The 

Peak Signal-to-Noise Ratio (PSNR) reaches 33.91 [5], 

indicating enhanced fidelity, while the Structural Similarity 

Index (SSIM) attains 0.924 [5], reflecting improved 

structural accuracy. 

   Xianglin Meng et al. [6] introduced YOLOv5s-Fog, an 

enhanced model specifically designed for object detection in 

foggy weather scenarios, building upon the YOLOv5s 

architecture. The methodology progresses iteratively, 

incorporating SwinFocus, Decoupled Head, and Soft-NMS 

components to refine performance and address the 

challenges posed by adverse weather conditions. The dataset 

utilized for evaluation comprises VOC, COCO, and RTTS, 

providing a diverse and comprehensive environment for 

assessing model performance [6]. Results from the 

evaluation demonstrate incremental improvements in mean 

Average Precision (mAP) throughout the iterative 

enhancement process. Starting from a baseline mAP of 68 

with YOLOv5s, the introduction of SwinFocus leads to an 

improvement to 70.15, followed by further enhancements 

with Decoupled Head (71.79), and culminating in an 

impressive mAP of 73.40 with the addition of Soft-NMS [6]. 

   Zhaohui Liu et al. [7] introduced a driving obstacle 

detection approach tailored specifically for foggy weather 

conditions. The proposed method leverages the GCANet 

defogging algorithm and incorporates feature fusion training 

with edge and convolution features to address the challenges 

posed by reduced visibility in adverse weather conditions. 

The evaluation of the proposed method [7] is conducted on 

the KITTI and BDD100K datasets.   

    Ying Guo et al. [8] present a domain-adaptive method 

for vehicle target detection in foggy weather conditions, 

leveraging the CPGAN net_x0002_work and YOLO-V4 [8]. 

The proposed approach incorporates Cycle Perceptual 

Consistency Adversarial Networks (CPGAN) to adapt the 

model to foggy weather conditions, aiming to enhance 

vehicle target detection performance under reduced 

visibility. 

Zhang, et al. [9] introduced the MSFFA-YOLO Network, 

a multiclass object detection system specifically designed for 

traffic investigations in foggy weather conditions. The 

evaluation of the MSFFA-YOLO Network is conducted on 

the RTTS [9] dataset.  

    Mingdi Hu et al. [10] presented an innovative 

approach, DAGL-Faster (Domain Adaptive GlobalLocal 

Alignment Faster RCNN), aimed at advancing vehicle object 

detection in challenging weather conditions, particularly in 

rainy and foggy environments. The proposed methodology 

integrates domain adaptation techniques, incorporating both 

global and local alignment strategies within the Faster R-
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CNN [10] framework to enhance the model's adaptability to 

adverse weather conditions. The datasets utilized in the 

evaluation include Cityscapes, Foggy Cityscapes [10], Rain 

Cityscapes [10], Vehicle Color-24, Rain Vehicle Color-24, 

Foggy Driving [10], RTTS [10], RID [10], and RIS [10], 

providing a rich and diverse set of scenarios to test the 

model's adaptability and robustness. On the Foggy 

Cityscapes dataset, the model achieves a mean Average 

Precision (mAP) of 36.7%. 

Nguyen Anh Minh Mai et al. [11] focused on enhancing 

3D object detection in foggy conditions by integrating 

camera and LiDAR data using the SLS-Fusion neural 

network. Their approach, evaluated on 35,000 stereo images 

from the KITTI dataset, demonstrates improved detection 

accuracy across varying fog visibility levels. At 20m 

visibility, the model achieves a mean Average Precision 

(mAP) of 71.11%, increasing to 84.95% at 80m, highlighting 

its adaptability to adverse weather conditions. By fusing 

stereo and LiDAR data, the SLS-Fusion network mitigates 

fog-related detection challenges, improving the reliability of 

autonomous systems in real-world scenarios. 

2.2  Defogging and dehazing techniques for image 

enhancements 

Salmane, et al. [11] focused on the visibility 

enhancement of scene images degraded by foggy weather 

conditions, presenting an application to video surveillance. 

The proposed method employs a Conditional Generative 

Adversarial Network (CGAN) for image restoration. The 

evaluation is conducted using the FRIDA (Fog Road Image 

Database) and haze images [11], providing a realistic 

representation of foggy scenarios. The reported parameters 

include enhancement factors, where e = 9 indicates a 

substantial improvement in visibility. Additionally, the 

values r− = 1.883 and σ = 0.003 [11] likely correspond to 

quantitative metrics assessing the restoration, with r− 

potentially representing a contrast-related factor and σ 

indicating a level of noise or variance. 

    Apurva Kumari, et al. [12] proposed a novel and 

expedient dehazing and defogging algorithm designed 

specifically for single remote sensing images. The 

methodology employs an atmospheric scattering model 

coupled with a guided filtering approach. The algorithm's 

performance is evaluated on the StaeHaze 1k dataset, and the 

results showcase its efficiency in mitigating atmospheric 

degradation across different haze levels. For images with 

Thin Haze, the algorithm achieves a PSNR (Peak Signal-to-

Noise Ratio) of 35.10 and an SSIM (Structural Similarity 

Index) of 0.9356 [12]. In Moderate Haze conditions, the 

algorithm maintains effectiveness with a PSNR of 34.81 and 

an SSIM of 0.9319 [12]. Impressively, for images with 

Thick Haze, the algorithm yields a PSNR of 35.17 and an 

SSIM of 0.9389 [12]. 

    Duo Ma, et al. [11] introduced an innovative and 

comprehensive system for addressing sewer pipeline defects, 

encompassing automatic defogging, deblurring, and real-

time segmentation. The proposed approach leverages 

advanced techniques, including a feature pyramid network 

(FPN), a Generative Adversarial Network (GAN), and a 

specifically designed network termed Pipe-Defog-Net. The 

authors [11] introduce Pipe-Deblur-GAN, integrating GAN 

and FPN components, to effectively preprocess images of 

sewer pipeline defects. The system is evaluated on the 

Realistic Single Image Dehazing (RESIDE) dataset [11], 

achieving impressive results with a mean Average Precision 

(mAP) of 84.15%. 

    Bhawna Goyal, et al. [13] conducts a comprehensive 

investigation into the burgeoning field of image dehazing, 

offering a formal analysis and evaluation of various 

dehazing methodologies proposed in the literature. The study 

systematically categorizes these approaches into model-

based methods, transform domain methods, variational-

based algorithms, learning-based algorithms, and 

transformer-based algorithms. The research [13] critically 

extracts and presents essential directions and standards 

associated with numerous image dehazing techniques, 

aiming to address challenges inherent in dehazing processes. 

The evaluation utilizes diverse datasets, including the 

Waterloo IVC Dehazed Image Dataset, the Foggy Road 

Image Dataset (FRIDA2) [13], I-Haze Dataset [13], Outdoor 

Scenes Database (O–Haze) Dataset, and the Real Single 

Image Dehazing (RESIDE) Dataset [13], to provide a 

thorough examination of the most significant studies in the 

domain of image dehazing. 

3. Proposed methodology 

In this research, a comprehensive methodology is 

devised to develop and evaluate an object detection model 

specifically tailored for foggy weather conditions. The 

methodology encompasses several key stages, including 

dataset collection, preprocessing, augmentation, dataset 

splitting, model training, and evaluation. 

The dataset collection process is initiated by leveraging 

existing resources such as the Real-Time Transfer of 

Semantics (RTTS) [6] dataset, which provides a 

foundational set of foggy images. To augment the dataset's 

diversity and ensure representation across various 

environmental contexts, additional images are collected from 

the internet. These internet-sourced images are carefully 

curated to cover a wide range of fog density levels and 

environmental settings. Moreover, real-world images 

captured under authentic foggy conditions are included to 

provide a realistic representation of foggy scenes. Each 

collected image is meticulously annotated with bounding 

boxes to indicate the presence and location of objects within 

the scene. 

Preprocessing techniques are applied to the collected 

images to enhance their quality and consistency. This 

includes standardizing image sizes, adjusting brightness and 

contrast levels, and removing noise or artifacts. Additionally, 

data augmentation methods are employed to increase the 

dataset's variability and robustness. Augmentation 
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techniques such as rotation, scaling, and flipping are applied 

to generate additional training samples, ensuring that the 

model is exposed to a diverse range of foggy scenes during 

training. 

The annotated dataset is divided into training, validation, 

and test sets to facilitate model development and evaluation. 

The training set comprises the majority of the annotated 

images and is used to train the object detection model. The 

validation set is utilized to fine-tune model hyper-parameters 

and monitor training progress, enabling adjustments to be 

made to optimize model performance. The test set, 

comprising images captured from a personal device with 

known fog density levels, serves as an independent 

benchmark for evaluating the trained model's performance 

under different fog density conditions. 

The YOLOv8x object detection framework is chosen as 

the model architecture for this research due to its efficiency 

and effectiveness in real-time applications. Transfer learning 

is employed during model training, utilizing pre-trained 

weights to expedite convergence and improve performance. 

The model is trained on the annotated dataset, learning to 

detect objects of interest within foggy scenes and refine its 

predictions based on the provided annotations. 

 

Fig. 2  Methodology Diagram illustrating the data processing pipeline, 

model architecture, and evaluation framework 

4. Experimental setup 

4.1 Dataset collection 

To create our dataset, we gathered foggy images from 

different places in Lahore during foggy nights. We also used 

a special dataset called RTTS [6], which contains real foggy 

images. Additionally, we collected foggier images from 

websites and online sources to make sure we had a wide 

variety of foggy scenes. 

When capturing real foggy images, we made sure to do it 

safely and respectfully. We used good cameras to take clear 

pictures, especially when the visibility was low. It was 

important for us to follow rules and respect people's privacy 

while taking these pictures. 

By combining images from different sources, like RTTS 

[6], websites, and our own captures, we created a big 

collection of foggy images. This collection shows different 

levels of fog and different places where fog can happen. 

Having this variety helps us make our object detection 

model better at recognizing objects in foggy weather. 

4.2 Dataset Annotation 

After gathering our foggy images, the next step was to 

annotate them. Annotation means marking the important 

parts of the images so the computer can learn from them. We 

carefully looked at each picture and drew boxes around the 

objects, like cars, people, and signs, to show where they are. 

This annotation process helps the computer understand 

what objects look like and where they are located in the 

image. It's like giving the computer a map to follow so it can 

recognize objects correctly. We made sure to do this for 

every image in our dataset, ensuring that our model has 

accurate information to learn from. We use roboflow website 

for annotation process (https://roboflow.com/).  

Additionally, we labeled each annotated image with 

details about the fog density level. This information helps 

our model learn to distinguish between different levels of 

fog, making it better at detecting objects in varying weather 

conditions. 

Overall, annotating our dataset was a crucial step in 

preparing the images for training our object detection model. 

Total of 4803 images were annotated in annotation process. 

By providing clear labels and annotations, we ensured that 

our model would learn effectively from the data, ultimately 

improving its performance in detecting objects in foggy 

environments. 

4.3 Dataset preprocessing 

After annotating our dataset, we moved on to 

preprocessing the images. This involved two main steps: 

resizing the images and augmentation. 

Image resizing: Resizing the images means changing their 

dimensions to a specific size. This step is important because 

it ensures that all images in the dataset have the same 

dimensions, making them easier for the computer to process. 

We resized our images to a standard size so that they would 

be uniform and consistent for training the model. 

Augmentation: Augmentation is like adding extra 

information to the images to help the model learn better. We 

applied various augmentation techniques to our dataset, such 

as flipping, rotating, and changing the brightness or contrast 

of the images. These techniques help increase the diversity 

of our dataset, making it more robust and improving the 

model's ability to recognize objects in different conditions. 

By preprocessing our dataset through resizing and 

augmentation, we prepared the images for training our object 

detection model. Resizing ensured uniformity in image 

dimensions, while augmentation enhanced the dataset's 

diversity, ultimately improving the model's performance in 

detecting objects in foggy weather conditions. 

https://roboflow.com/
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4.4 Dataset splitting 

After preparing our dataset, we needed to split it into two 

parts: one for training and one for testing. This splitting step 

is like dividing our dataset into two groups, each serving a 

different purpose. 

Training data: We allocated 75% of our dataset for 

training. This part is used to teach our computer model to 

recognize objects in foggy weather. It's like giving the 

computer lots of examples to study so it can learn and get 

better at its job. 

Test data: The remaining 25% of our dataset was reserved 

for testing. This part is like giving the computer a quiz to 

see how well it learned from the training data. We want to 

make sure our model can correctly identify objects in foggy 

conditions it hasn't seen before. 

To make our testing more accurate, we used images that I 

captured myself. I knew the fog density in these images 

because I took them, so I could compare the model's 

performance based on the known fog density. This way, we 

could draw conclusions specifically about how well the 

model performs in different fog densities. 

By splitting our dataset and using special test data with 

known fog densities, we ensured that our model was trained 

and tested effectively, helping us understand its performance 

in foggy conditions better. 

In terms of individual objects, the dataset incorporates a 

total of 41,838 objects, with RTTS [14] contributing 29597 

objects. Through annotation efforts, approximately 12241 

additional objects have been incorporated into the dataset, 

enhancing its diversity and comprehensiveness. 

 

4.5 Architecture of YOLOv8x 

The architecture of YOLOv8x is characterized by a deep 

neural network structure with multiple layers, each serving a 

specific purpose. A notable feature is its adoption of a 

backbone network, often based on CSPDarknet53 or other 

variants, which facilitates the extraction of hierarchical 

features from input images. This deep structure enables 

YOLOv8x to learn complex representations, crucial for 

effective object detection in diverse scenarios. YOLOv8x 

utilizes a modified version of the CSPDarknet53 architecture 

as its backbone, featuring 53 convolutional layers. 

 Cross-stage partial connections are employed within 

this architecture to enhance the flow of information 

between different layers. 

 The head of YOLOv8 is comprised of multiple 

convolutional layers followed by a series of fully 

connected layers. 

 These layers play a crucial role in predicting bounding 

boxes, objectness scores, and class probabilities for 

detected objects in an image. 

 A noteworthy feature of YOLOv8's head is the 

integration of a self-attention mechanism. 

 This self-attention mechanism allows the model to 

selectively focus on different parts of the image, 

adjusting the importance of various features based on 

their relevance to the task. 

 YOLOv8 exhibits multi-scaled object detection 

capabilities, facilitated by the implementation of a 

feature pyramid network. 

 The feature pyramid network, composed of multiple 

layers, enables the model to detect objects at different 

scales within an image. 

YOLOv8 follows the single-shot object detection 

paradigm, wherein the entire image is processed in a single 

forward pass. This design choice allows YOLOv8 to make 

predictions for bounding boxes and class probabilities 

swiftly, making it suitable for real-time applications. The 

model achieves this by leveraging convolutional layers, 

down sampling layers, and detection layers in its 

architecture. 

To address the challenge of handling objects at varying 

scales, YOLOv8 incorporates a Feature Pyramid Network 

(FPN). This pyramid architecture ensures that the model 

can effectively detect objects of different sizes within an 

image, contributing to its versatility in handling complex 

scenes. 

YOLOv8 utilizes anchor boxes, a mechanism that aids 

in refining the accuracy of bounding box predictions. These 

anchor boxes are learned during the training process and play 

 

a crucial role in capturing the diverse shapes and sizes of 

objects present in images. The inclusion of anchor boxes 

contributes to the model's precision in object localization. 

The final layers of YOLOv8's architecture house the 

object detection head, responsible for predicting bounding 

boxes and class probabilities. This component enables 

YOLOv8 to detect and classify multiple objects within an 

image, providing comprehensive and detailed results in a 

single pass. 

4.6 Model training  

In the training phase, the YOLOv8x along with other 

models was configured with specific parameters to optimize 

its performance for object detection in high fog conditions. 

The training process spanned 25 epochs, allowing the model 

to iteratively learn and refine its parameters over multiple 

iterations. Each epoch involved processing a batch size of 16 

images, enabling efficient utilization of computational 

resources while ensuring sufficient diversity in the training 

data. Furthermore, to accommodate varying object scales 

and maintain computational efficiency, the images were 

Dataset Images Person Car Bicycle Motor

cycle 

Bus Total 

RTTS+

Custom 

4,802 12,012 25,074 790 1,483 2,479 41,838 
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resized to a dimension of 640x640 pixels. Additionally, the 

"plots" parameter was set to "true" during training, enabling 

the generation of visualizations such as the confusion matrix, 

precision confidence curve, and recall confidence curve. 

These visualizations provide valuable insights into the 

model's performance across different confidence thresholds 

and object classes, facilitating a comprehensive analysis of 

its detection capabilities and enabling informed decision-

making regarding model refinement and optimization 

strategies. By carefully selecting and tuning these 

parameters, the training process aimed to maximize the 

model's accuracy and robustness in detecting objects under 

challenging high fog conditions.  

4.7 Experimental results  

To evaluate how well our proposed YOLOv8x model 

performs, we trained various models, including YOLOv5s, 

YOLOv7, YOLOv8s, YOLOv8n, and YOLOv9c, on our 

dataset. We then compared their performance. We tested these 

models using two different types of test data: one with regular 

fog and the other with heavy fog. The results for regular fog 

are presented in Table 1, while those for heavy fog (with 

visibility limited to 30 meters) are shown in Table 2. These 

tables provide insights into how each model performs under 

different weather conditions, helping us understand their 

effectiveness in detecting objects in foggy environments. 

Table 1. Results Comparison (Normal Fog) indicating evaluation metrics, 

including Precision, Recall, and mAP. Statistical tests were conducted to 
assess performance differences, with significant results annotated. 

Models Precision Recall mAP50 Speed (ms) 

Yolov5s 0.78 0.70 0.73 1.5 

Yolov7 0.79 0.71 0.74 1.7 

Yolov8s 0.773 0.67  0.739 1.6 

Yolov8n 0.756 0.626 0.707 0.9 

Yolov9c 0.761 0.689 0.752 0.2 

Yolov8x 0.814 0.669 0.76 0.2 

It can be seen in Table 1. that The YOLOv8x model 

surpassed its counterparts in terms of precision, achieving a 

score of 0.814, along with a recall of 0.669, resulting in an 

mAP of 0.76. Despite its superior accuracy, its inference 

speed remained relatively efficient at 0.7ms, indicating its 

potential for real-time object detection applications. 

Additionally, the confusion matrix, Precision-Confidence 

Curve, and Recall-Confidence Curve provide further insights 

into the model's performance across different confidence 

thresholds and object classes, enabling a comprehensive 

analysis of its detection capabilities and limitations as you 

can see in Fig 3, Fig 4 and Fig 5. These visualizations offer 

valuable information for refining the model and optimizing 

its performance in foggy weather conditions. 

  

Fig. 3 Confusion matrix of the YOLOv8x model illustrating classification 

performance on dataset (Normal Fog)  

 

Fig. 4  Precision-Confidence curve of the YOLOv8x model, illustrating the 

relationship between confidence threshold and precision (Normal Fog).  

 

Fig. 5  Recall-Confidence curve of the YOLOv8x model, illustrating the 

relationship between the confidence threshold and recall (Normal Fog)  

Table 2. Results Comparison in high fog (20 -30m visibility) 

This table reports the evaluation metrics, including Precision, Recall, and 

mAP. Statistical tests were conducted to determine if the performance 

differences are significant, and the results are annotated accordingly. 

Models Precision Recall mAP50 Speed (ms) 

Yolov5s 0.75 0.62 0.69 0.3 

Yolov8s 0.76 0.62  0.70 0.4 

Yolov8n 0.72 0.61 0.67 0.3 

Yolov9c 0.67 0.52 0.57 0.3 

Yolov8x 0.796 0.62 0.722 0.2 

It can be seen in Table 2. that YOLOv8x achieved the 

highest mean Average Precision (mAP) of 72.2%, with 

precision and recall scores of 79.6% and 61.9%, respectively in 
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high fog. The model demonstrated superior detection 

capabilities, especially for identifying cars and persons, under 

high fog conditions. These results underscore the effectiveness 

of YOLOv8x in object detection tasks in adverse weather 

environments, making it a promising candidate for deployment 

in real-world scenarios. Additionally, the confusion matrix, 

Precision-Confidence Curve, and Recall-Confidence Curve 

provide further insights into the model's performance across 

different confidence thresholds and object classes, enabling a 

comprehensive analysis of its detection capabilities and 

limitations as you can see in Fig 6, Fig 7 and Fig 8. These 

visualizations offer valuable information for refining the model 

and optimizing its performance in foggy weather conditions. 

 

Fig. 6  Confusion matrix of the YOLOv8x model illustrating classification 

performance on dataset (High Fog)  

 

Fig. 7  Precision-Confidence curve of the YOLOv8x model, illustrating the 

relationship between confidence threshold and precision (High Fog) 

 

Fig. 8 Recall-Confidence curve of the YOLOv8x model, illustrating the 

relationship between the confidence threshold and recall (High Fog) 

The results obtained from the evaluation of various 

models under high fog conditions highlight their 

effectiveness and suitability for object detection tasks in 

adverse weather environments. As shown in Table 1 and 

Table 2, YOLOv8x emerged as the top-performing model, 

demonstrating superior detection capabilities with the 

highest mean Average Precision (mAP) among the tested 

models. The detailed confusion matrix for YOLOv8x in 

foggy conditions, illustrated in Fig. 6, provides a breakdown 

of true positives, false positives, and false negatives, 

highlighting the model's ability to accurately identify objects 

even in adverse scenarios. 

Furthermore, Fig. 7 presents the Precision-Confidence 

curve, which indicates the model's precision across varying 

confidence thresholds. It reveals that YOLOv8x consistently 

maintains high precision across the evaluated range, 

outperforming the other models. Similarly, the Recall-

Confidence curve in Fig. 8 demonstrates YOLOv8x's 

robustness, achieving a strong recall performance across 

confidence levels, which is crucial for minimizing missed 

detections. 

YOLOv8s also showcased robust performance, followed 

closely by YOLOv5s, while YOLOv8n exhibited slightly 

lower but still satisfactory results. However, YOLOv9c 

showed limitations in detection accuracy under high fog 

conditions, as evidenced by its lower performance metrics 

across these visualizations, indicating the need for further 

optimization. Overall, the findings underscore the 

importance of selecting appropriate models for object 

detection tasks in adverse weather scenarios and provide 

valuable insights for the development of robust and reliable 

detection systems for real-world applications. Future 

research directions may include refining model architectures, 

optimizing training strategies, and exploring advanced 

techniques to enhance detection accuracy and robustness 

under challenging weather conditions. 

5. Conclusion 

In conclusion, this research has addressed the critical 

need for robust object detection systems tailored for adverse 

weather conditions, particularly foggy environments. By 

leveraging a real dataset captured in diverse foggy weather 

conditions and employing the YOLOv8x architecture, this 

study has made significant strides in advancing the state-of-

the-art in foggy weather object detection. Through 

meticulous dataset collection, annotation, and analysis, this 

research has shed light on the impact of fog density on 

detection performance, providing valuable insights into the 

challenges posed by varying fog conditions. The systematic 

evaluation of the YOLOv8x model has demonstrated its 

effectiveness in detecting objects under foggy weather 

conditions, with promising results indicating its potential for 

real-world applications. 
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The findings of this study underscore the importance of 

considering fog density levels in object detection tasks and 

highlight the significance of real-world datasets in 

developing robust detection models. Moving forward, future 

research efforts should focus on refining detection 

algorithms, exploring additional factors influencing 

detection performance, and validating the proposed approach 

in a broader range of real-world foggy environments. This 

includes testing under different geographic and 

environmental conditions to ensure model generalizability 

and robustness. Additionally, integrating advanced 

techniques such as domain adaptation and real-time 

processing capabilities could further enhance performance. 

Ultimately, the outcomes of this research have 

implications across diverse domains, including autonomous 

driving, surveillance, and navigation, where accurate object 

detection in adverse weather conditions is crucial for 

ensuring safety and efficiency. 
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