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A B S T R A C T 

The importance of the model reduction techniques cannot be denied or ignored for a number of 

combustion problems in chemical sciences. We examine an analysis of very well-known method 

by Mass and Pope by measuring the influence of physical processes on the water-gas shift 
reaction (WGSR). We observe that if the process of physical and chemical reactions is coupled, 

this will lead to a very dramatic effect. An adaptive parameterization technique is developed for 

the numerical implementation. Through proper algorithm and grid size variations, the 
approximate solution is obtained and further refined with the method of invariant grids. 

Consequently, it leads us to a vicious effect on CPU when we extended this idea to higher 

dimensions. 

 

 

1. Introduction 

The behaviour of the chemical species (ci), which are 

involved in a complex chemical reaction, can easily be 

monitored if we are capable of transforming the 

mentioned chemical model into a mathematical model. 

This will not only help in controlling the system but also 

enables us to measure the relation among these chemical 

species. 

If a mathematical model involves a linear system, it 

can easily be handled analytically, but usually, it does not 

happen. Therefore, we continue with the process 

numerically with the assumption of small time interval t  

replacing the infinitesimal dt for measuring concentration 

during the next time interval. In this way, we can deduce 

that stiffness usually arises in the governing equations of 

chemical reactions. 

Now for the construction of slow invariant manifold 

(SIM), we first need an initial approximation. This initial 

approximation can be obtained by using any of the newly 

developed methods [1-5]. 

Also, there exist such methods [3-7] which 

automatically calculate the steady state and quasi-

equilibrium estimates over all possible thermochemical 

states of the system by using the fact that during the 

reaction process, a large number of chemical species 

move so fast that they can only be decoupled to control or 

limit the process. Then these decoupled fn  fast reactions 

may be ignored (as they are faster than the flow-time 

scale) while the slow ones (progress variables) can be 

tracked. Based on the same aspects, ILDM method 

categorizes attracting intrinsic low-dimensional manifolds 

in s fn n n   dimensional state space (where n implies 

overall species) with the assumption that after a short 

time, the thermodynamic state of the system would slow 

down into the low-dimensional manifold sn . As the 

progress variables sn  are responsible for the whole 

mechanism, we only calculate this variable. This leads to 

an efficient reduction in CPU time by reducing the 

complexity of the reaction. 

This method is explained with examples in the next 

sections. For simplification of our problem, we first 

consider its one-dimensional geometry. The governing 

equations for the calculation of initial approximations are 

standard and they can easily be found in many kinds of 

literature [8-10]. In order to achieve the convergences, 

these equations are solved in time scale. The idea is then 

extended to higher dimensions. 

 

  Corresponding author 
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2. Chemical Model 

For a basic notation of the chemical kinetics and its 

formalism, consider a list of the finite set of components 

with symbols 
1
, , ssp pn

C C (chemical species).  The 

reaction mechanisms are basically a combination of finite 

set of elementary reactions based on stoichiometric 

equations: 

        spi i i i
i i

spC C             (1) 

Where, 1, ,m   are the reaction numbers and  

,
i i    are the stoichiometric coefficients, i. e., 

nonnegative integers.  

The stoichiometric vectors   of the elementary 

reactions are n  dimensional vectors with coordinates 

,
i i i      which mean “gain minus loss” in the 

th  elementary reaction. 

The elementary reaction can also be written as a 

combination of complexes i  appears on both sides of 

each reaction. So, the reaction mechanism can be 

rewritten as a digraph of the transformation of complex

 
    i.e. vertices are complexes and edges are the 

reactions [8]. 

While a complex i  is a formal sum of 

1

,
n

i ij i
j

A


   where ij  is a vector with coordinates ij  

and 
 represent the reactant and product of the reaction. 

Similarly, the intermediate compounds B


 also lie on 

both sides of the reactions with the complex i thus,the 

above reaction mechanism (1) in extended form will take 

a form 

i i i i
i i

A B B A         

i.e., the mechanism involves two type of reactions: 

equilibration between a complex and its compound. 

While for each nonnegative extensive variable iN  

there exists an intensive variable iC  the concentration, 

i.e., /i iC N V , while (volume 0V  ). Now, the vector 

/C N V   having coordinates ic becomes the vector of 

concentrations. Similarly, the reaction rate ( )r or w   is 

another non-negative intensive quantity, which 

corresponds to each reaction. The kinetic equations in the 

absence of external flux are: 

       (, ), ( ) ( )
dN

V r N VJ c J c r c
dt

   
 

         (2) 

In the case of non-constant volume, we have a 

different form (i.e., the case of chemical combustion) of 

equations for concentrations. In perfect systems and not 

very fast reactions, the reaction rate is a function of 

concentrations and temperature given by the law of mass 

action. 

          ( , ) ( )
i

i
i

r c T k T c


            (3) 

The observed rate of reaction is the difference 

between the forward and backward processes r r r 
 

. 

The relation between these quantities is given by a 

principle of detailed balance,  

   ( ) ( )eq eqr c r c 
          (4) 

Here ( )eqc T  represents the equilibrium for the 

system (2) and we consider the closed system of 

equations with constant volume V. For an isolated 

system, the extra equations are U (internal energy), V 

(volume) = constant, for an isochoric isothermal system, 

we get V, T= constant, and so forth. Therefore, (2) takes 

the following form in the latter case: 

       ( ) ( )spC r c J c 


           (5) 

We also consider other linear constraints in a chemical 

reaction, i.e., conservation of atoms takes a form: 

         .  Csp
D C B          (6) 

Where Csp
B are the balancing constants, id   are the rows 

of the matrix, l mD  and C  involve the chemical species. 

Once we are able to define the thermodynamic 

structure of the system, equations (2) and (6) comprise 

such a discrete system, in which, we are interested. 

3. The Mathematical Model 

Through modern model reduction techniques, a 

researcher can construct an invariant manifold for the 

system based on its initial approximation. In a dynamic 

system, the slow invariant manifold can be described as a 

slow motion along the manifold and a fast motion 

approaching towards them as shown in Fig. 1. 

Now, let us discuss the general idea given by ILDM 

for the construction of invariant manifold. If the system 

consists of n  dimensional ordinary differential 

equations, the system will be : 
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          ( )
dC

C
dt

          (7) 

The above system describes the variation of the 

chemical species along with constant parameters. For the 

low dimension, it is important to be familiar with the time 

scale at each point. If there are sn  characteristic time 

scales (the eigenvalue of their Jacobian) then there exist 

sn  characteristic directions (eigenvector) associated with 

it. Its Jacobian J at each point in the solution space is 

represented as : 

      

1 1

1

0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

n

n n

n n

c c

J

c c

 

 

  
  
 
 

  
 
  
 
  

         (8) 

' 0 ' is the point where the Jacobian is evaluated. 

Normally, the perturbed system can be analyzed with 

respect to their eigenspaces, i.e. 

1. The perturbation is increasing in the direction of 

eigenvector in the case of positive eigen-values. 

2. It shows the relaxing behavior for the negative eigen-

values. 

3. The zero eigen-value implies that variables are 

conserved at that point. 

At each point, the state space of the manifold can be 

measured after dividing them into two subgroups, i.e., fast 

and slow subspace. The slow subspace arises from the fast 

ones fn  showing the steady state behavior towards the 

equilibrium and gives the value of the slow manifold 

  .s fn n n   

      {  , 1... , 1... }f fc ci i
V Vi n i n n            (9) 

ci
V

 
symbolizes the fast-slow variation measured at 

each point. This partition reduced the possibility of 

solution trajectories to move along the fast direction. In 

this way, we are able to measure the manifold (low 

dimension) containing only slower time scale. 

For proper removal of such possibilities of moving along 

the fast direction, we can take them to be in orthogonal 

directions. But usually, these vectors are not orthogonal. 

Therefore, with the help of Gram-Schmidt 

orthogonalization method, we apply the Schur 

decomposition method on Jacobian matrix, measured at 

each point in a phase space [11-12]. The real matrix M 

given by Schur decomposition is represented as: 

      
TM P P T        (10) 

Here T  is the transpose while T is an upper triangle 

having diagonal entries of eigen-values and P is an 

orthonormal matrix. We call ,f sP P the transition 

matrices obtained from the local to the standard basis 

from Jacobean matrix while its inverse becomes: 

( , )f sP P P , 
1 f

s

P
P

P



 
 

  
 
 




 

 
1 0

.
0 1

f

f s

s

P
P P I

P

 
  

   
  

 




 

In this way, we are able to apply the Schur 

decomposition method at each point of the solution space 

as long as the system (7) is continuous. 

By definition, the ILDM can be measured from any 

unmeasured system of fn  equations for n  variables by 

       
. ( ) 0,fP C         (11) 

This vanishes the big part of the Jacobian matrix 

analogous to the fast time scale. Here fP  indicates the 

( )fn n matrix and its row partitioning is transposes of 

Schur matrix. 

4. The Equilibrium 

The equilibrium mostly deals with thermodynamics for 

the purpose of studying the transformations of energy and 

the relations between the massiveness properties of the 

matter. Thermodynamics is useful for model reduction in 

discrete systems. Although, the thermodynamics are 

concise by a number of laws, two of them have more 

significance in chemical science. The first law explains 

the law of conservation of energy, whereas the Second 

Law gives the notion of entropy and it is used to find out 

the direction of natural changes [13]. The importance of 

the Second Law of thermodynamics in chemical 

phenomena can be observed by the overture of the Gibbs 

energy of a system and the closely related chemical 

potential of a substance. These quantities not only allow 

us to monitor the natural direction of physical and 

chemical changes, but also the condition of chemical 

equilibrium when a reaction mixture has no further 

tendency to undergo any change. 

The major idea behind this discussion is that entropy 

increases during the fast motion and therefore, on the 

plane of rapid motion, the point of entropy maximum is 

not very far away from the slow manifold [14]. In this 

region, the fast and slow motion have comparable 

velocities as shown in the Fig. 1. 



M. Shahzad  et al. / The Nucleus 53, No. 2 (2015) 107-113 

110 

 

Fig 1: Fast-slow decomposition: The slow manifold passes through 

the equilibrium point (black circle) while the fast 
manifold approaches towards the equilibrium after 

emerging out of different points, given by [15]:

1 3 4 2 4 3 5,   c c c c c c c     . 

5.  The Scheme 

In order to get all possible discrete data that lies over 

the manifold in the phase space, we proceed very 

systematically. We apply the Schur decomposition 

method over the Jacobian matrix, which is measured at 

each point other than the equilibrium point. We can 

deduce that it is closer to the equilibrium point and later, 

it moves forward to the next point g p
i i icc c   after 

making the correction through ILDM. The next guess 

point can be obtained by moving a small distance  ic  

along the tangent to the manifold at that point as shown in 

Fig. 2. 

 

Fig  2. Shows the vector field measured at each grid point (indicated in 

different colors) and then it is projected (the smallest one) over 
the tangent space by using the Schur decomposition method. 

Where pg and ng represent the previous and new 

guesses. Similarly, for the next points, an assumption can 

be made by solving this expression: 

           
( ) 0T ng pg

i iP c c         (12) 

By knowing ngc , we can further solve the above 

equations by using any iterative solver. The new goals can 

be achieved by using the previous guess. This procedure 

will continue until we achieve convergence within the 

specified tolerance. One dimensional manifold can be 

obtained by moving in both the directions from the 

equilibrium as shown in Fig. 2. 

6.  Refinement 

The manifold obtained by an ILDM method is an 

initially approximated manifold. It needs to be refined by 

any iterative method in order to get accuracy. Therefore, a 

method of the invariant grid is applied here. For further 

details of this method, we refer the readers to [2,14,16]. 

The problem of the grid correction is fully decomposed 

into the problems of the grid‟s node correction, for which, 

we can measure a low defect of invariance at each grid 

point. 

We use the thermodynamic projector pT defined in 

[16] for our case (Eq: 5). pT  is the tangent subspace 

spanned by the vector pe . Vector parallel to pT  is F and 

1 2 3( , , )x x x x  generate a three-dimensional vector 

projected onto it. We can write: 

, 1/ ( ),

( ) ( , ) ,

p

p p

e wf w DG F

Px DG x e G x e

 

  
 

While the null space of Tp has the following form: 

1 1 2 2 3 3( , ) 0,G x G Gx x xG      

And 1 2 3( , , )G G G G  . The dimension of 

(ker ker )S Tp B   is 1; whereas B is a matrix of 

atomic balance. Let 1s  be a vector, which spans S. 

Newton's [4] method of incomplete linearization is 

applied over each point of initially approximated SIM to 

refine the grid point, i.e. 0 1 1( : )x x x x s      in a 

form of 1
1

1 1

((1 ) , )
.

((1 ) , )

Tp J s

Tp Ls s



 


  

Define the concentration spaces ix  in vectorial form

1 2 3[ , , ] ;TM c c c  here, T represents a transpose. For a 

thermodynamic scalar product: 

, ( , ),x y x Hy  
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1
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0.3
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Where (,) implies Euclidean scalar product and H  is the 

second derivative matrix of Lyapunov function G . We 

define 

1 1 1/ , / , / , /J J M G G M S S M f F M     

While A is a vector species. 

     , , , 1  ,G i j log i j M i jM     % Gradient 

measure ( , ) /G Gf i j e e ‖ ‖ ,
   

% tangent at each point 

     , , / ,  ,K i j f i j G F
 

% Euclidean scalar product 

     , , / , ,K i j F i j G f % Euclidean scalar product 

1( , ) ( , ) ( , ),Tp i j G i j K i j  % Thermodynamic Projector 

( )
( , ) ,

i

J x
L i j

x





 

% Jacobian matrix  

1 ( ),S null Tp B  % spanning set 

Now, the step size is defined as 

1
1

1

( , )
(1 )

( , )

XJ S
and X Tp

XLb S
     

with the Euclidean scalar product. Thus 

1 1.M M    

% First refinement 

In the same manner, we can proceed for the second 

refinement if it requires 

2 1 2.MM    

% Second refinement 

In our case, the second refinement remains the same. 

Example 

Let us implement the idea discussed above. For this, 

we consider an example called „water, gas shift reaction‟ 

[17]. This system consists of two-step reversible reactions  

  
2 2

2

H O Z OZ H

OZ CO Z CO

C C C C

C C C C

 

 




       (13) 

Involving six chemical species, spC , i.e.

2 2 2
, , , , ,H O Z OZ H CO COC C C C C C , their kinetic 

equation can be found through (5). 

1 3 4 1 1 22

1 3 4 1 1 2 2 3 5 2 6 2

1 3 4 1 1 2 2 3 5 2 6 2

1 3 4 1 1 22

2 3 5 2 6 2

2 3 5 2 6 22

H O

Z

OZsp

H

CO

CO

C k c c k c c

C k c c k c c k c c k c c

C k c c k c c k c c k c cdC

dt C k c c k c c

C k c c k c c

C k c c k c c

 

   

   

 

 

 

  
 
    
 
     
 
   
 
   
 
  
 













(14) 

The relation between molecular matrices BM  and 

stoichiometric matrices S  can easily be verified, 

          . 0S BM         (15) 

While the balancing terms for Hydrogen, Oxygen, and 

Zinc are given by (7) 

      

1 4

1 3 5 6

2 3

2 2

2

H

O

Z

c c b

c c c c b

c c b

   
   

   
   
      

       (16) 

Before applying an ILDM method (mathematical 

model), it is important to select the starting point to begin 

the process. An equilibrium point is the best option 

available to be considered as an initially known point on a 

manifold.  

Let us define the following parameters 

   
1 2 3 4

1 25 6

0.5, 0.1, 0.1, 0.4,

0.1, 0.1, 1, 0.5

eq eq eq eq

eq eq

c c c c

c c k k 

   

   
       (17)

 

Now, we are interested in the reduced form of the 

system (13) with the help of (16) in order to measure the 

variation of the variables with respect to fast and slow 

variables. Therefore, the Jacobian measured at an 

equilibrium point gives the following outcome: 

  

0.2250 1.0000 0.0000

/ 0.2750 1.0500 0.1500

0.0500 0.0500 0.1500

iL J c

 
 

    
 
   

  

(18) 

Moving towards the next guess point gc near the 

equilibrium point eqc in a forward (backward) direction 

we have an equation: 

      
eqr c h b          (19) 

Whereas h  is the step size and b is the slowest 

eigenvector corresponding to the lowest eigenvalue. The 

eigenspace span by the system is carefully planned at 

each defined time interval. By implementing model 

reduction and using the Schur decomposition at each 

point, it may be possible to get its analytical solutions or 
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even by hand calculation might be valid to some extent, 

but for a large system,(just like the one we have)it is 

preferable to make its numerical calculations. 

Now, the transition matrix (18) is given by 

      
0.1786 0.2449 0.9529

0.6734 0.7365 0.0631
Q

 
  

 
       (20) 

While the variation observed here is as follows: 

           
1 6 3

  c c cV V V         (21) 

Now, in the reduced form of the system, it no longer 

remains stiff and it is feasible to get the whole solution of 

the system. Similarly, moving in both forward and 

backward directions from the equilibrium position, their 

increasing, and decreasing order can easily be measured 

as depicted in Fig. 3. Now, it is important to mention here 

that the points on the manifolds represent an intrinsic low-

dimensional attractive manifold and they are well 

described by the slow time scale after decaying the fast 

time scales.  

 

Fig 3: 1D ILDM measured in 3D. Starting from an equilibrium point 

(black circle), it first moved to its forward direction (blue line) 

and then in backward direction (red line) with h=0.01 

 

Fig 4: 1D ILDM measured in 3D is further refined with the method of 

invariant grids and no change was observed during the process. 

According to the first refinement carried out with the 

MIG in Fig. 4, there is no change in the solution curve. 

Therefore, we extended our efforts towards the higher 

dimension and obtained the 2D curves in three 

dimensions by keeping h=0.01 using the fact that one 

dimension ILDM belongs to two-dimensional ILDMs and 

so on. This idea can be used to compute the ILDM of the 

second order and to do that, we must divide the one-

dimensional ILDM into small intervals at each point of 

that subdivision advanced in both directions following the 

procedure outlined in Fig. 5. 

 

Fig 5: 2D ILDM measured in 3D with h=0.01. Black circle lines 

indicate the 1D ILDM lies in the 2D blue star lines. 

6. Conclusion 

In order to be aware of the chemical changes occurred 

during the molecular mechanism, we need to understand 

how molecules behave during the reactions. They either 

move through free flight gasses or by diffusion through 

liquids. The present paper is also concerned with changes 

in the chemical species and we precisely studied their 

rates of chemical reactions. 

Specifically, in the case of complex chemical kinetics 

with a known detailed narration of the system, we usually 

solve the initial value problem for the system. But we fail 

when we have information about only a small part of the 

interacting system. 

The graphic representation of the chemical species and 

their variation with respect to time clears the idea of fast 

and slow trajectories. Through proper algorithm and grid 

size variations, we started measuring an equilibrium 

point. The idea is then extended to an approximated 1D 

ILDM solution, which is then refined with the method of 

invariant grids. Similarly, the formulations for the higher-

dimension manifolds are discussed and involved a larger 

number of time scales, which simply means that more 

progress variables were added to the manifold for the 

construction. 
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