
The Nucleus 53, No. 2 (2016) 155-161

www.thenucleuspak.org.pk

 155

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

A Penalty Function Based Differential Evolution Algorithm for Constrained Optimization

H. Wazir, M. A. Jan, W.K. Mashwani
*
and T.T. Shah

Department of Mathematics, Kohat University of Science & Technology, KPK, Pakistan

hamzawazir@hotmail.com; majan@kust.edu.pk; mashwanigr8@gmail.com; tayyabashah37@yahoo.com

A R T I C L E I N F O

Article history :

Received : 10 April, 2016

Revised : 03 June, 2016

Accepted : 14 June, 2016

Keywords :

Differential evolution,

JADE,

Constraints handling,
Penalty function,

Static penalty function

A B S T R A C T

Differential evolution (DE) and its various dialects are basically designed for solving

unconstrained optimization problems and have been widely used .Adaptive differential evolution

with optional external archive (JADE)is one of the efficient and updated versions of DE. This

paper enhances the capability of JADE to solve constrained optimization problems (COPs). The
enhancement is based on introducing a static penalty function in the selection scheme of JADE

to handle constraints. The performance of the modified algorithm, abbreviated as CJADE-S is

tested on a well-known test suit of COPs, CEC2006. The experimental results show the better
performance of CJADE-S on most of the test problems of CEC2006.

1. Introduction

Evolution, being a two-step process of random

variation and selection can be modelled mathematically

as 𝑥 𝑡 + 1 = 𝑠 𝑣 𝑥 𝑡 , where 𝑥 𝑡 and 𝑥 𝑡 + 1 are

the populations at times t and t+1, respectively, obtained

after execution of selection (𝑠) and variation (𝑣)

operators. The process of evolution can also be modelled

algorithmically and simulated on a computer [1]. The

modelled algorithm is known as evolutionary algorithm

(EA).EAs are inspired by the natural evolution of species.

They randomly generate an initial population, which

undergoes mutation and crossover to generate offspring.

A selection scheme then plays the role of selecting good

individuals among the parents and offspring on the basis

of their fitness value. This process continues from one

generation to another till the desired optimal value is

achieved or a pre-specified stopping criteria is met.

EAs have been widely used for solving several types

of unconstrained optimization problems (e.g., see) [2, 3].

However, they need some modifications to handle

constraints and thus to solve COPs. From last so many

decades, the resulting constraint handling EAs have got

much attention [4]. By combining different constraint

handling methods and EAs, researchers have designed a

good number of constrained optimization evolutionary

algorithms [5, 6]. They have been considerably successful

in a wide range of applications, e.g., see [7-10],

[11-14]. This paper implants the static penalty function

proposed byHomaifar et al. [4] in the selection scheme of

JADE to solve COPs, and thus proposes CJADE-S.

The remainder of this paper is organized as follows.

Section 2 describes a short review of DE and JADE.

Section 3 discusses some constraint handling techniques.

It also details that how our chosen static penalty function

is incorporated in the selection scheme of JADE. Sections

4 and 5 show the experimental results and comparison

with some other algorithms, respectively. Finally, Section

6 concludes this paper.

2. Classic and Adaptive Differential Evolution

This section discusses the classical DE algorithm and

one of its efficient and updated version, JADE.

2.1 Differential Evolution

Differential Evolution (DE) is one of the well-known

EAs. It was first proposed by Rainer Storn and Kenneth

Price in 1996, and is used for solving single-objective

unconstrained optimization problems [15, 16]. DE also

works on the same mechanism as other EAs. Its mutation,

crossover and selection schemes are detailed as follows.

Mutation: An operator which maintains genetic diversity

of one generation population to the next generation is

called mutation. In each generation 𝑔 of DE, a mutant

vector, 𝒗𝑖 ,𝑔 for each individual of the current population,

 𝒙𝑖 ,𝑔 𝑖 = 1,2, … , 𝑁𝑃 is designed by using, for example,

one of the following strategies [17] :

1. “DE/rand/1”:

 𝒗𝒊,𝒈 = 𝒙𝑟0,𝑔 + 𝐹𝑖 ∗ 𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔 (1)

 Corresponding author

mailto:majan@kust.edu.pk
mailto:mashwanigr8@gmail.com
mailto:adeeb_maths@yahoo.com

H. Wazir et al. / The Nucleus 53, No. 2 (2016) 155-161

156

2. “DE/current-to-best/1”

𝒗𝑖 ,𝑔 = 𝒙𝑖 ,𝑔 + 𝐹𝑖 ∗ 𝒙𝑏𝑒𝑠𝑡 ,𝑔 − 𝒙𝑖 ,𝑔 + 𝐹𝑖 ∗ 𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔 ,

 (2)

where 𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔 is a difference variation vector

corresponding parent 𝒙𝑖 ,𝑔 , 𝒙𝑏𝑒𝑠𝑡 ,𝑔 is the best individual

of the current generations, coefficient 𝐹𝑖of variation

frequently chosen from the interval(0,1+) . In classical

DE, 𝐹𝑖 = 𝐹, a fixed value is operated, throughout. For

more mutation strategies see ref. [17].

Crossover: A process of generating child solution from

one or more parent solutions is called crossover. After

mutation, this operation constitutes a final test/offset

vector

 𝒖𝑖 ,𝑔 = (𝑢1,𝑖 ,𝑔 , 𝑢2,𝑖 ,𝑔 , … , 𝑢𝑛 ,𝑖 ,𝑔) [17]:

𝒖𝑗 ,𝑖 ,𝑔 =
𝑣𝑗 ,𝑖 ,𝑔 , 𝑖𝑓 𝑟𝑎𝑛𝑑 𝑎, 𝑏 ≤ 𝐶𝑅𝑖 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ;

𝑥𝑗 ,𝑖 ,𝑔 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒,
 (3)

Whereas 𝑟𝑎𝑛𝑑 𝑎, 𝑏 is an unvarying arbitrary number

in the interval [a, b], and each 𝑖 and 𝑗 generated

independently. Crossover probability CR𝑖𝜖 0,1 is

roughly equivalent to inherit the mutant vector, vector

components from an average score. In classical DE,

parameter CR𝑖 = 𝐶𝑅 is fixed.

Selection: An operation or process of choosing between

parent vector 𝒙𝑖 ,𝑔and trial vector 𝒖𝑖 ,𝑔 according totheir

fitness value is called selection [17].

 𝒙𝑖,𝑔+1 =
𝒖𝑖,𝑔, 𝑖𝑓 𝑓 𝒖𝑖,𝑔 < 𝑓 𝒙𝑖,𝑔 ;

𝒙𝑖,𝑔, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
 (4)

DE runs different mutation strategies. The strategy

DE/current-to-best/1/bin, due to its greedy nature by

preferring best solution, may lead it to premature

convergence. However, if the information of the best

soultion(s) is/are properly used, then it may lead

algorithm towards the true optimum. Also, DE needs the

right set of parameters for different problems at different

stages of evolution [18-20]. The three main parameters of

DE are population size 𝑁𝑃, the scaling factor 𝐹 and the

crossover rate 𝐶𝑟, which affect its performance. For best-

tuning of these parameters, the time taken ``trial and

error“ mechanism is used. In order to overcome this

problem, researchers have introduced adaptive and self-

adaptive mechanisms [21, 22].

These mechanisms vigorously update parameters,

without user's aforesaid knowledge of the relationship

between the parameters and parameter„s settings [17].

JADE is one of the adaptive versions of DE. It is briefly

described below.

2.2 JADE

As stated above, JADE [17] is an enhanced and

adaptive variant of DE. In JADE, the authors developed a

new greedy scheme, i.e., “DE/current-to-pbest/1”, which

is the generalization of Eq. 2. Any of the

top 100𝑝 %, 𝑝 ∈ 0 , 1 solutions can be randomly

chosen in “DE/current-to-pbest” to play the role for the

single best solution in Eq. 2 [17]. It uses the best solution

information and information of the other good solutions

too. Although the proposed mutation mechanism is of

greedy nature, it diversifies the population. Thus problem

like premature convergence can be removed. JADE also

adjusts the parameters 𝐹 and 𝐶𝐹 adaptively, the details of

which can be found in [17]. Further, it uses the same

operations of crossover and selection is same as given in

Eq. (4) and (5), respectively. Since JADE is designed for

unconstrained optimization problems. For solving COPs,

it requires some additional technique to handle

constraints.

3. Constraints Handling Techniques

Constrained optimization problems (COPs) arise in

many real-world applications, and are thus gaining a

growing interest. By knowing the difficulty of EAs to

handle constraints, researchers have hybridized different

constraints handling strategies with EAs, and thus solved

COPs. The most simple and common one of them is to

use a penalty function method.

3.1 Penalty Function Methods

Penalty function methods are commonly used for

handling constraints in COPs [4]. They transform a

constrained problem into an unconstrained problem by

defining a new evaluation function, where a penalty term

is added to the original cost function [23], [24].

Penalty function method was initially derived by

Cournt in 1940s [25] and later raised by Carol [26] and

Fiacco and McCormick [27]. Mathematically, it is given

by following equation:

 𝜔 𝒙 = 𝑓 𝒙 ± ∑𝑟𝑖 ∗ 𝐺𝑖 + ∑𝑐𝑗 ∗ 𝐿𝑗 (5)

wherein 𝜔(𝒙) is the new optimized objective

function.𝐺𝑖 and 𝐿𝑗 are functions of constraints 𝑔𝑖 and 𝑗 ,

respectively.𝑟𝑖 and 𝑐𝑗 are positive constants, often referred

to as ''penalty factor''. General forms of 𝐺𝑖 and 𝐿𝑗 are:

 𝐺𝑖 = 𝑚𝑎𝑥 0, 𝑔1 𝒙 𝛽 ; 𝐿𝑗 = |𝑗 𝒙 |𝛾 (6)

There are different types of penalty functions. In this

paper, we use a static penalty function with JADE, which

is described below.

H. Wazir et al. / The Nucleus 53, No. 2 (2016) 155-161

 157

 Table 1: Experimental Results Generated by Algorithm CJADE-S

Problems Known Optimum Best Achived Worst Median Mean Std

G01 -15.000000 -15.000001 -15.000000 -15.000000 -15.000000 9.285e-008

G02 -0.803619 -0.802539 -0.800449 -0.801265 -0.801247 4.955e-004

G03 -1.000000 -1.000704 -0.954599 -0.996941 -0.992415 1.271e-002

G04 -30665.539000 -30666.835783 -30671.779950 -30670.121586 -30669.946710 1.262e+000

G05 5126.498000 5126.496176 5269.055484 5126.496183 5145.088350 3.961e+001

G06 -6961.814000 -6983.814860 -6983.814860 -6983.814860 -6983.814860 4.502e-010

G07 24.306000 24.306166 24.341437 24.306167 24.309498 8.746e-003

G08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 1.416e-017

G09 680.630000 680.630046 680.630046 680.630046 680.630046 4.417e-011

G10 7049.331000 7033.978422 6947.378149 6981.506522 6983.423317 2.343e+001

G11 0.750000 0.749874 0.749874 0.745158 0.744601 4.502e-003

G12 -1 -1 -1 -1 -1 0

G13 0.053950 0.060123 0.793421 0.461116 0.441500 1.808e-001

3.1.1 Modification of JADE with Static Penalty

Function(CJADE-S)

In a static penalty function, the penalty factor does not

depends in any way on the current generation. It remains

unchanged throughout the evolution. Homaifar et al. [4]

proposed this technique, in its various levels of violation

(1,2, … , 𝑛) of constraints are defined by the handler. It is

given as follows [4]:

 𝐹 𝒙 = 𝑓 𝒙 + ∑𝑅𝑖𝑗 𝑚𝑎𝑥 0, 𝑔𝑗 𝒙
2

, (7)

where 𝑅𝑖𝑗 is a penalty parameter corresponding to 𝑖𝑡

constraint violationand𝑗𝑡 constraint,and

𝑔
𝑗
(𝒙) =

0, 𝑖𝑓 𝑔
𝑗
 𝒙 ≤ 0, 1 ≤ 𝑖 ≤ 𝑝;

 𝑔
𝑗
 𝒙 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

 (8)

Here,𝑔𝑗 (𝒙) are the inequality constraints.

This static penalty function converts equality

constraints, 𝑗 𝒙 = 0 intoinequality constraints,

 𝑗 𝒙 − 𝜖 ≤ 0, where 𝜖 is a small positive number.

In this paper, we used Eq. (7) in the selection scheme

of JADE to penalize infeasible solutions. As a result, it

gives us a new algorithm, denoted by CJADE-S for

solving COPs.

4 Experimental Study

We evaluated the performance of CJADE-S on

CEC2006 functions suit with constraints of different types

[28]. Population size fixed at 100. For each test function,

we run CJADE-S 25 time‟s idependently. Their best,

worst, mean, median and standard deviation(std) data is

obtained after 500000 function evaluations (𝐹𝐸𝑆). These

statistics are shown in Table 1. We also plot the

convergence graphs of each function againstgenerations,

see Figures 1-13. All the functions graphs show the

convergence towards the optimum in a smooth way,

except the function G13 due to its exponential nature.

Fig. 1 Convergence graph of G01

Fig. 2: Convergence graph of G02

H. Wazir et al. / The Nucleus 53, No. 2 (2016) 155-161

158

Fig. 3: Convergence graph of G03

Fig. 4: Convergence graph of G04

Fig. 5: Convergence graph of G05

Fig. 6: Convergence graph of G06

Fig. 7: Convergence graph of G07

Fig. 8: Convergence graph of G08

H. Wazir et al. / The Nucleus 53, No. 2 (2016) 155-161

 159

Fig. 9: Convergence graph of G09

Fig. 10: Convergence graph of G10

Fig. 11: Convergence graph of G11

Fig. 12: Convergence graph of G12

Fig. 13: Convergence graph of G13

5. Comparison

CJADE-S algorithm has been observed and showed

good competitive results. The achieved values were very

encouraging, as most problems have 100 percent result,

some have results around the optimum. The results are

compared with other algorithms too, shown in Table 2

and Table 3.

We set 𝑀𝐴𝑋 𝐹𝐸𝑆 = 500000 and 𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑠 = 25

for each function and calculated

The results by using MATLAB
®
 7.12(R2011a). Table

2 shows the comparison between CJADE-S and DE with

penalty [23]. The best, mean and median values are

compared. Table 3 shows the comparison between

CJADE-S and Simple Multi-member Evolution Strategy

(SMES) [29]. The best, mean and median results are

compared.

H. Wazir et al. / The Nucleus 53, No. 2 (2016) 155-161

160

Table 2: Comparison of CJADE-Sand DE with penalty

Problems

Optimum Best Mean Values Median Values

CJADE-S DE with penalty CJADE-S DE with penalty CJADE-S DE with penalty

G01 -15.000001 -15 -15.000000 -15 -15.000000 -14.9999927

G02 -0.802539 -0.46112 -0.801247 -0.43753 -0.801265 -0.4388441

G03 -1.000704 0.05618 -0.992415 0.05618 -0.996941 0.05618023

G04 -30666.835783 -30665.5 -30669.946710 -30665.5 -30670.121586 -30665.5387

G05 5126.496176 5126.767 5145.088350 5126.767 5126.496183 5126.766506

G06 -6983.814860 -6961.81 -6983.814860 -6961.81 -6983.814860 -6961.81388

G07 24.306166 24.35136 24.309498 24.37486 24.306167 24.37306

G08 -0.095825 -0.09583 -0.095825 -0.09583 -0.095825 -0.09582504

G09 680.630046 680.301 680.630046 680.6301 680.630046 680.6300574

G10 7033.978422 7049.312 6983.423317 7049.368 6981.506522 7049.364188

G11 0.749874 0.75 0.744601 0.75 0.745158 0.75

G12 -1 -1 -1 -1 -1 -1

G13 0.060123 0.05395 0.441500 0.05395 0.461116 0.053942

Both algorithms CJADE-S and DE (penalty) used the same static penalty. The results of optimum best value achived by functions G02, G03, G05,

G07 and G09 from CJADE-S are better, and funtions G04, G06, G10, G11 and G13 shows better result from DE(penalty). The functions G01, G08
and G12 are equal. In compariosion of mean value, the functions G02, G03, G07 and G09 from CJADE-S are better, and funtions G04, G05, G06,

G10, G11 and G13 shows better result from DE(penalty), The funtions G01, G08 and G012 are equal. The comparsion betwenn median values of

algorithms, the functions G01, G02, G03, G05, G07 and G09 shown better results by CJADE-S algorithm and functions G04, G06, G10, G11 and
G13 are better by DE(penalty). The function G08 and G12 are equal in results with both algorithms.

 Table 3: Comparison of CJADE-S and Simple Multimember Evolution Strategy (SMES)

Problems
Optimum Best Mean Values Median Values

JADE-S SMES JADE-S SMES JADE-S SMES

G01 -15.000001 -15.000 -15.000000 -15.000 -15.000000 -15.000

G02 -0.802539 0.803601 -0.801247 0.785238 -0.801265 0.792549

G03 -1.000704 1.000 -0.992415 1.000 -0.996941 1.000

G04 -30666.835783 -30665.539 -30669.946710 -30665.539 -30670.121586 -30665.539

G05 5126.496176 5126.599 5145.088350 5174.492 5126.496183 5160.198

G06 -6983.814860 -6961.814 -6983.814860 -6961.284 -6983.814860 -6961.814

G07 24.306166 24.327 24.309498 24.475 24.306167 24.426

G08 -0.095825 0.095825 -0.095825 0.095825 -0.095825 0.095825

G09 680.630046 680.632 680.630046 680.643 680.630046 680.642

G10 7033.978422 7051.903 6983.423317 7253.047 6981.506522 7253.603

G11 0.749874 0.75 0.744601 0.75 0.745158 0.75

G12 -1 1.000 -1 1 -1 1.000

G13 0.060123 0.053986 0.441500 0.166385 0.461116 0.061873

The above mentioned results are the outputs of CJADE-S and SMES algorithms. The results of optimum best value achived by functions G05,
G07, G09 and G10 from CJADE-S are better, and funtions G02, G03,G04, G06, G11 and G13 shows better result from SMES algorithm. The

functions G01, G08 and G12 are equal. In compariosion of mean value, the functions G02, G05, G07, G09 and G10 from CJADE-S are better in
result and funtions G03, G04, G06, G11 and G13 shows better result from SMES. The funtions G01, G08 and G012 are equal. The comparsion

betwenn median values of algorithms, the functionsG02, G05, G07, G09 and G10 shown better results at CJADE-S algorithm and functions

G03, G04, G06, G11 and G13 are better at SMES. The functions G01, G08 and G12 are equal in median value results.

H. Wazir et al. / The Nucleus 53, No. 2 (2016) 155-161

 161

6. Conclusion

In this research work, we modify JADE algorithm to

examine its capability for solving COPs. In proposed

modified JADE, we introduce static penalty function in

the selection scheme of JADE algorithm for handling

optimization problems with constraints functions.

The performance of algorithm CJADE-S, is tested on

known COPs, CEC2006. The experimental results show

the better performance of CJADE-S on most of the

problems.

In the future, the performance of CJADE-S algorithm

will be compared with several techniques available in the

research history, to check its effectiveness. We will study

some more static penalty functions in this approach to

enhance the reliability of the search technique for more

COPs.

References:

[1] Goldberg, D.E “Genetic Algorithms in Search, Optimization, and

Machine Learning”, Addison-Wesley, Reading, Massachusetts,

1998.

[2] D.V. Arnold, “Noisy Optimization With Evolution Strategies”,

Norwell, MA. Kluwer. 2002.

[3] C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont,

“Evolutionary Algorithms for Solving Multi-Objective Problems”,

Norwell, MA:Kluwer, 2002.

[4] A. Homaifar, S.H.Y. Lai and X. Qi, “Constrained optimization via

genetic algorithms”, Simulation, vol. 62, pp. 242-254, 1994.

[5] Z. Michalewicz, K. Deb, M. Schmidt, and T. Stidsen, “Test-case

generator for constrained parameter optimization techniques”,

IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 197-215. 2000.

[6] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithm for

con-strained parameter optimization problems”, Evol. Comput.,
vol. 4, no.1, pp. 1-32, 1996.

[7] T. Beack (Ed.), “Proceedings of the Seventh International
Conference on Genetic Algorithms”, Morgan Kaufmann,

San Mateo, CA, 1997.

[8] D.B. Fogel, “Evolutionary Computation. Toward a New

Philosophy of Machine Intelligence”, The Institute of Electrical

and Electronic Engineers, New York, 1995.

[9] M. Gen, R. Cheng, “Genetic Algorithms Engineering Design”,

Wiley, New York, 1997.

[10] D.E. Goldberg, “Genetic Algorithms in Search, Optimization and

Machine Learning”, Addison-Wesley, Reading, MA, 1989.

[11] Z. Michalewicz, “Genetic Algorithms + Data Structures Evolution

Programs”, 2nd
 Ed. Springer, Berlin, 1992.

[12] M. Mitchell, “An Introduction to Genetic Algorithms”, MIT Press,

Cambridge, MA, 1996.

[13] I. Parmee (Ed.), “The Integration of Evolutionary and Adaptive

Computing Technologies with Product/System Design and
Realisation”, Springer, Plymouth, UK, 1998.

[14] V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.),
“Evolutionary Programming” VII”, Proceedings of the Seventh

Annual Conference on Evolutionary Programming, Lecture Notes

in Computer Science,1447, Springer, San Diego, CA, 1998.

[15] R. Storn and K. Price, “Differential Evolution – A Simple and

Efficient Adaptive Scheme for Global Optimization over
Continuous Spaces”, International Computer Science Institute,

Berkeley, Tech. Rep. TR-95-012, 1995.

[16] R. Storn and K. V. Price, “Differential evolution-A simple and

efficient heuristic for global optimization over continuous Spaces”,
J. Global optim., vol. 11, pp. 341-359, 1997.

[17] J. Zhang and A. C.Sanderson, “JADE: Adaptive Differential
Evolution with Optional External Archive”, IEEE Transactions on

Evolutionary Computation, vol 13, no 5, pp. 945-958, 2009 .

[18] R. Gamperle, S. D. Muller, and P. Koumoutsakos, “A Parameter

study for differential evolution, ”Proceedings of the International

Conference on Advances in Intelligent Systems, Fuzzy Systems,
Evolutionary Computation (WSEAS '02), Interlaken, Switzerland,

pp. 11–15, February 2002.

[19] E. Mezura-Montes, J. Velzquez-Reyes, and C. A. Coello Coello,

“A Comparative study of Differential Evolution variants for

Global Optimization”, Proceedings of the 8th Annual Conference
on Genetic EvolutionaryComputation. C Seattle, Washington.,

USA, pp. 485-492, 2006..

[20] K. V. Price, R. M. Storn and J. A. Lampinen, “Differential

Evolution: A Practical Approach to Global Optimization”. 1st Ed.

New York: Springer-Verlag, 2005

[21] H. A. Abbass, “The self-adaptive pareto differential evolution

algorithm”, Proc. IEEE Congr. Evol. Comput., 1. Honolulu, HI,
pp. 831-836, 2002

[22] Z. Yang, K. Tang, and X. Yao, “Self-adaptive Differential
Evolution with Neighbourhood Search”, Proc. of the 2008 IEEE

Congress on Evolutionary Computing , Hong Kong, China, pp.

1110-1116, 2008.

[23] Er. Anuj Kumar Parashar, Dr. BDK Patro, Dr. C Patvardhan,

“Constraint-Handling techniques for optimization using

Differential Evolution”, International Journal of Scientific &

Engineering Research, vol. 4, no. 7, ISSN 2229-5518, 2013.

[24] Ozgu Yeniay, “Penalty Function Methods for con-strained

optimization with genetic algorithms”, Mathematical and

Computational Applications, vol. 10, no. 1, pp. 45-56, 2005.

[25] R. Courant, “Variational methods for the solution of problems of

equilibrium and vibrations”, Bull. Am. Math. Soc., vol. 49, pp.
1-23, 1943.

[26] C.W. Carroll, “The created response surface technique for
optimizing nonlinear restrained systems”, Operations Research,

vol. 9, pp. 169-184,1961.

[27] A.V. Fiacco, G.P. McCormick, “Extensions of SUMT for

nonlinear programming: Equality constraints and extrapolation”,

Manage. Sci., vol. 12, no. 11, pp. 816-828, 1968.

[28] J. J. Liang, T. P. Runarssaon and P.N. Suganthan, Problems

definitions and evaluation criteria for the CEC 2006 special session

on constrained real-parameter optimization”, J. Appl. Mechanics,

Technical Report, vol. 41, no. 8, 2006.

[29] E. M. Montes and C. A. C. Coello, “A Simple Multimembered

Evolution Strategy to Solve Constrained Optimization Problems”,

IEEE Trans. Evol. Comput, vol. 9, no. 1, pp. 1-15, 2005.

