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A B S T R A C T 

Differential evolution (DE) and its various dialects are basically designed for solving 

unconstrained optimization problems and have been widely used .Adaptive differential evolution 

with optional external archive (JADE)is one of the efficient and updated versions of DE. This 

paper enhances the capability of JADE to solve constrained optimization problems (COPs). The 
enhancement is based on introducing a static penalty function in the selection scheme of JADE 

to handle constraints. The performance of the modified algorithm, abbreviated as CJADE-S is 

tested on a well-known test suit of COPs, CEC2006. The experimental results show the better 
performance of CJADE-S on most of the test problems of CEC2006. 

 

 

1. Introduction  

Evolution, being a two-step process of random 

variation and selection can be modelled mathematically 

as 𝑥 𝑡 + 1 = 𝑠 𝑣 𝑥 𝑡   , where 𝑥 𝑡  and 𝑥 𝑡 + 1  are 

the populations at times t and t+1,  respectively, obtained 

after execution of selection (𝑠) and variation (𝑣) 

operators. The process of evolution can also be modelled 

algorithmically and simulated on a computer [1]. The 

modelled algorithm is known as evolutionary algorithm 

(EA).EAs are inspired by the natural evolution of species. 

They randomly generate an initial population, which 

undergoes mutation and crossover to generate offspring. 

A selection scheme then plays the role of selecting good 

individuals among the parents and offspring on the basis 

of their fitness value. This process continues from one 

generation to another till the desired optimal value is 

achieved or a pre-specified stopping criteria is met. 

EAs have been widely used for solving several types 

of unconstrained optimization problems (e.g., see) [2, 3]. 

However, they need some modifications to handle 

constraints and thus to solve COPs. From last so many 

decades, the resulting constraint handling EAs have got 

much attention [4]. By combining different constraint 

handling methods and EAs, researchers have designed a 

good number of constrained optimization evolutionary 

algorithms [5, 6]. They have been considerably successful 

in a wide range of applications, e.g., see [7-10], 

[11-14]. This paper implants the static penalty function 

proposed byHomaifar et al. [4] in the selection scheme of 

JADE to solve COPs, and thus proposes CJADE-S. 

The remainder of this paper is organized as follows. 

Section 2 describes a short review of DE and JADE. 

Section 3 discusses some constraint handling techniques. 

It also details that how our chosen static penalty function 

is incorporated in the selection scheme of JADE. Sections 

4 and 5 show the experimental results and comparison 

with some other algorithms, respectively. Finally, Section 

6 concludes this paper. 

2. Classic and Adaptive Differential Evolution 

This section discusses the classical DE algorithm and 

one of its efficient and updated version, JADE. 

2.1 Differential Evolution 

Differential Evolution (DE) is one of the well-known 

EAs. It was first proposed by Rainer Storn and Kenneth 

Price in 1996, and is used for solving single-objective 

unconstrained optimization problems [15, 16]. DE also 

works on the same mechanism as other EAs. Its mutation, 

crossover and selection schemes are  detailed as follows. 

Mutation: An operator which maintains genetic diversity 

of one generation population to the next generation is 

called mutation. In  each generation 𝑔 of DE, a mutant 

vector,  𝒗𝑖 ,𝑔  for each individual of the current population, 

 𝒙𝑖 ,𝑔 𝑖 = 1,2, … , 𝑁𝑃 is designed by using, for example, 

one of the following  strategies [17] : 

1. “DE/rand/1”: 

        𝒗𝒊,𝒈 = 𝒙𝑟0,𝑔 + 𝐹𝑖 ∗  𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔               (1) 
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2. “DE/current-to-best/1” 

𝒗𝑖 ,𝑔 = 𝒙𝑖 ,𝑔 + 𝐹𝑖 ∗   𝒙𝑏𝑒𝑠𝑡 ,𝑔 − 𝒙𝑖 ,𝑔 + 𝐹𝑖 ∗  𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔 ,  

             (2) 

where  𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔 is a difference variation vector 

corresponding parent  𝒙𝑖 ,𝑔 ,   𝒙𝑏𝑒𝑠𝑡 ,𝑔  is the best individual 

of the current generations, coefficient 𝐹𝑖of variation 

frequently chosen from the interval(0,1+) . In classical 

DE, 𝐹𝑖 = 𝐹, a fixed value is operated, throughout. For 

more mutation strategies see ref. [17]. 

Crossover: A process of generating child solution from 

one or more parent solutions is called crossover. After 

mutation, this operation constitutes a final test/offset 

vector  

  𝒖𝑖 ,𝑔 = (𝑢1,𝑖 ,𝑔 , 𝑢2,𝑖 ,𝑔 , … , 𝑢𝑛 ,𝑖 ,𝑔)  [17]: 

𝒖𝑗 ,𝑖 ,𝑔 =  
𝑣𝑗 ,𝑖 ,𝑔 , 𝑖𝑓 𝑟𝑎𝑛𝑑 𝑎, 𝑏 ≤ 𝐶𝑅𝑖  𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ;

𝑥𝑗 ,𝑖 ,𝑔 ,                                           𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒,
         (3) 

Whereas 𝑟𝑎𝑛𝑑 𝑎, 𝑏 is an unvarying arbitrary number 

in the interval [a, b], and each 𝑖  and 𝑗  generated 

independently. Crossover probability CR𝑖𝜖 0,1  is 

roughly equivalent to inherit the mutant vector, vector 

components from an average score. In classical DE, 

parameter CR𝑖 = 𝐶𝑅 is fixed. 

Selection: An operation or process of choosing between 

parent vector 𝒙𝑖 ,𝑔and trial vector 𝒖𝑖 ,𝑔  according totheir 

fitness value is called selection [17]. 

  𝒙𝑖,𝑔+1 =  
𝒖𝑖,𝑔,         𝑖𝑓 𝑓 𝒖𝑖,𝑔 < 𝑓 𝒙𝑖,𝑔 ;

𝒙𝑖,𝑔,                           𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
         (4) 

DE runs different mutation strategies. The strategy 

DE/current-to-best/1/bin, due to its greedy nature by 

preferring best solution, may lead it to premature 

convergence. However, if the information of the best 

soultion(s) is/are properly used, then it may lead 

algorithm towards the true optimum. Also, DE  needs the 

right set of parameters for different problems at different 

stages of evolution [18-20]. The three main parameters of 

DE are population size 𝑁𝑃, the scaling factor 𝐹 and the 

crossover rate 𝐶𝑟, which affect its performance. For best-

tuning of these parameters, the time taken ``trial and 

error“ mechanism is used. In order to overcome this 

problem, researchers have introduced adaptive and self-

adaptive mechanisms [21, 22]. 

These mechanisms vigorously update parameters, 

without user's aforesaid knowledge of the relationship 

between the parameters and parameter„s settings [17]. 

JADE is one of the adaptive versions of DE. It is briefly 

described below. 

2.2 JADE 

As stated above, JADE [17] is an enhanced and 

adaptive variant of DE. In JADE, the authors developed a 

new greedy scheme, i.e., “DE/current-to-pbest/1”, which 

is the generalization of Eq. 2. Any of the 

top 100𝑝 %, 𝑝 ∈   0 , 1  solutions can be randomly 

chosen in “DE/current-to-pbest” to play the role for the 

single best solution in Eq. 2 [17]. It uses the best solution 

information and information of the other good solutions 

too. Although the proposed mutation mechanism is of 

greedy nature, it diversifies the population. Thus problem 

like premature convergence can be removed. JADE also 

adjusts the parameters 𝐹 and 𝐶𝐹 adaptively, the details of 

which can be found in [17]. Further, it uses the same 

operations of crossover and selection is same as given in 

Eq. (4) and (5), respectively. Since JADE is designed for 

unconstrained optimization problems. For solving COPs, 

it requires some additional technique to handle 

constraints. 

3. Constraints Handling Techniques 

Constrained optimization problems (COPs) arise in 

many real-world applications, and are thus gaining a 

growing interest. By knowing the difficulty of EAs to 

handle constraints, researchers have hybridized different 

constraints handling strategies with EAs, and thus solved 

COPs. The most simple and common one of them is to 

use a penalty function method.  

3.1 Penalty Function Methods 

Penalty function methods are commonly used for 

handling constraints in COPs [4]. They transform a 

constrained problem into an unconstrained problem by 

defining a new evaluation function, where a penalty term 

is added to the original cost function [23], [24]. 

Penalty function method was initially derived by 

Cournt in 1940s [25] and later raised by Carol [26] and 

Fiacco and McCormick [27]. Mathematically, it is given 

by following equation: 

      𝜔 𝒙 = 𝑓 𝒙 ±   ∑𝑟𝑖 ∗ 𝐺𝑖 + ∑𝑐𝑗 ∗ 𝐿𝑗             (5) 

wherein 𝜔(𝒙) is the new optimized objective 

function.𝐺𝑖  and 𝐿𝑗  are functions of constraints 𝑔𝑖  and 𝑗 , 

respectively.𝑟𝑖  and 𝑐𝑗  are positive constants, often referred 

to as ''penalty factor''. General forms of 𝐺𝑖  and 𝐿𝑗  are: 

     𝐺𝑖 = 𝑚𝑎𝑥 0, 𝑔1 𝒙  𝛽 ;  𝐿𝑗 = |𝑗  𝒙 |𝛾            (6) 

There are different types of penalty functions. In this 

paper, we use a static penalty function with JADE, which  

is described  below. 
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  Table 1:    Experimental Results  Generated by Algorithm CJADE-S  

Problems Known Optimum Best Achived Worst Median Mean Std 

G01 -15.000000 -15.000001 -15.000000 -15.000000 -15.000000 9.285e-008 

G02 -0.803619 -0.802539 -0.800449 -0.801265 -0.801247 4.955e-004 

G03 -1.000000 -1.000704 -0.954599 -0.996941 -0.992415 1.271e-002 

G04 -30665.539000 -30666.835783 -30671.779950 -30670.121586 -30669.946710 1.262e+000 

G05 5126.498000 5126.496176 5269.055484 5126.496183 5145.088350 3.961e+001 

G06 -6961.814000 -6983.814860 -6983.814860 -6983.814860 -6983.814860 4.502e-010 

G07 24.306000 24.306166 24.341437 24.306167 24.309498 8.746e-003 

G08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 1.416e-017 

G09 680.630000 680.630046 680.630046 680.630046 680.630046 4.417e-011 

G10 7049.331000 7033.978422 6947.378149 6981.506522 6983.423317 2.343e+001 

G11 0.750000 0.749874 0.749874 0.745158 0.744601 4.502e-003 

G12 -1 -1 -1 -1 -1 0 

G13 0.053950 0.060123 0.793421 0.461116 0.441500 1.808e-001 

 

3.1.1 Modification of JADE with Static Penalty 

Function(CJADE-S) 

In a static penalty function, the penalty factor does not 

depends in any way on the current generation. It remains 

unchanged throughout the evolution. Homaifar et al. [4] 

proposed this technique, in its various levels of violation 

(1,2, … , 𝑛) of constraints are defined by the handler. It is 

given as follows [4]: 

 𝐹 𝒙 = 𝑓 𝒙 + ∑𝑅𝑖𝑗 𝑚𝑎𝑥 0, 𝑔𝑗  𝒙  
2

,              (7) 

where 𝑅𝑖𝑗 is a penalty parameter corresponding to 𝑖𝑡  

constraint violationand𝑗𝑡  constraint,and 

𝑔
𝑗
(𝒙) =  

0,             𝑖𝑓 𝑔
𝑗
 𝒙 ≤ 0, 1 ≤ 𝑖 ≤ 𝑝;

 𝑔
𝑗
 𝒙  ,                      𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

           (8)   

Here,𝑔𝑗 (𝒙) are the inequality constraints. 

This static penalty function converts equality 

constraints, 𝑗  𝒙 = 0  intoinequality constraints, 

  𝑗  𝒙  − 𝜖 ≤ 0, where 𝜖  is a small positive number.  

In this paper, we used Eq. (7) in the selection scheme 

of JADE to penalize infeasible solutions. As a result, it 

gives us a new algorithm, denoted by CJADE-S for 

solving COPs. 

4 Experimental Study 

We evaluated the performance of CJADE-S on 

CEC2006 functions suit with constraints of different types 

[28]. Population size fixed at 100. For each test function, 

we run CJADE-S 25 time‟s idependently. Their best, 

worst, mean, median and standard deviation(std) data is 

obtained after 500000 function evaluations (𝐹𝐸𝑆). These 

statistics are shown in Table 1. We also plot the 

convergence graphs of each function againstgenerations, 

see Figures 1-13. All the functions graphs show the 

convergence towards the optimum in a smooth way, 

except the function G13 due to its exponential nature.  

 
Fig. 1 Convergence graph of G01 

 
Fig. 2: Convergence graph of G02 
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Fig. 3: Convergence graph of G03 

 

Fig. 4: Convergence graph of G04 

 

Fig. 5: Convergence graph of G05 

 

 

Fig. 6: Convergence graph of G06 

 

Fig. 7: Convergence graph of G07 

 

Fig. 8: Convergence graph of G08 
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Fig. 9: Convergence graph of G09 

 

Fig. 10: Convergence graph of G10 

 

Fig. 11: Convergence graph of G11 

 

Fig. 12: Convergence graph of G12 

 

Fig. 13: Convergence graph of G13 

5. Comparison 

CJADE-S algorithm has been observed and showed 

good competitive results. The achieved values were very 

encouraging, as most problems have 100 percent result, 

some have results around the optimum. The results are 

compared with other algorithms too, shown in Table 2 

and Table 3. 

We set 𝑀𝐴𝑋 𝐹𝐸𝑆 = 500000 and 𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑠 = 25 

for each function and calculated  

The results by using MATLAB
®
 7.12(R2011a). Table 

2 shows the comparison between CJADE-S and DE with 

penalty [23]. The best, mean and median values are 

compared. Table 3 shows the comparison between 

CJADE-S and Simple Multi-member Evolution Strategy 

(SMES) [29]. The best, mean and median results are 

compared. 
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Table 2:    Comparison of CJADE-Sand DE with penalty 

Problems 

Optimum Best Mean Values Median Values 

CJADE-S DE with penalty CJADE-S DE with penalty CJADE-S DE with penalty 

G01 -15.000001 -15 -15.000000 -15 -15.000000 -14.9999927 

G02 -0.802539 -0.46112 -0.801247 -0.43753 -0.801265 -0.4388441 

G03 -1.000704 0.05618 -0.992415 0.05618 -0.996941 0.05618023 

G04 -30666.835783 -30665.5 -30669.946710 -30665.5 -30670.121586 -30665.5387 

G05 5126.496176 5126.767 5145.088350 5126.767 5126.496183 5126.766506 

G06 -6983.814860 -6961.81 -6983.814860 -6961.81 -6983.814860 -6961.81388 

G07 24.306166 24.35136 24.309498 24.37486 24.306167 24.37306 

G08 -0.095825 -0.09583 -0.095825 -0.09583 -0.095825 -0.09582504 

G09 680.630046 680.301 680.630046 680.6301 680.630046 680.6300574 

G10 7033.978422 7049.312 6983.423317 7049.368 6981.506522 7049.364188 

G11 0.749874 0.75 0.744601 0.75 0.745158 0.75 

G12 -1 -1 -1 -1 -1 -1 

G13 0.060123 0.05395 0.441500 0.05395 0.461116 0.053942 

Both algorithms CJADE-S and DE (penalty) used the same static penalty.  The results of optimum best value achived by functions G02, G03, G05, 

G07 and G09 from CJADE-S are better, and funtions G04, G06, G10, G11 and G13 shows better result from DE(penalty). The functions G01, G08 
and G12 are equal. In compariosion of mean value, the functions G02, G03, G07 and G09 from CJADE-S are better, and funtions G04, G05, G06, 

G10, G11 and G13 shows better result from DE(penalty), The funtions G01, G08 and G012 are equal. The comparsion betwenn median values of 

algorithms, the functions G01, G02, G03, G05, G07 and G09  shown better results by CJADE-S algorithm and functions G04, G06, G10, G11 and 
G13 are better by DE(penalty). The function G08 and G12 are equal in results with both algorithms. 

  Table 3:    Comparison of CJADE-S and Simple Multimember Evolution Strategy (SMES) 

Problems 
Optimum Best Mean Values Median Values 

JADE-S  SMES JADE-S  SMES JADE-S  SMES 

G01 -15.000001 -15.000 -15.000000 -15.000 -15.000000 -15.000 

G02 -0.802539 0.803601 -0.801247 0.785238 -0.801265 0.792549 

G03 -1.000704 1.000 -0.992415 1.000 -0.996941 1.000 

G04 -30666.835783 -30665.539 -30669.946710 -30665.539 -30670.121586 -30665.539 

G05 5126.496176 5126.599 5145.088350 5174.492 5126.496183 5160.198 

G06 -6983.814860 -6961.814 -6983.814860 -6961.284 -6983.814860 -6961.814 

G07 24.306166 24.327 24.309498 24.475 24.306167 24.426 

G08 -0.095825 0.095825 -0.095825 0.095825 -0.095825 0.095825 

G09 680.630046 680.632 680.630046 680.643 680.630046 680.642 

G10 7033.978422 7051.903 6983.423317 7253.047 6981.506522 7253.603 

G11 0.749874 0.75 0.744601 0.75 0.745158 0.75 

G12 -1 1.000 -1 1 -1 1.000 

G13 0.060123 0.053986 0.441500 0.166385 0.461116 0.061873 

The above mentioned results are the outputs of CJADE-S and SMES algorithms. The results of optimum best value achived by functions G05, 
G07, G09 and G10 from CJADE-S are better, and funtions G02, G03,G04, G06, G11 and G13 shows better result from SMES algorithm. The 

functions G01, G08 and G12 are equal. In compariosion of mean value, the functions G02, G05, G07, G09 and G10 from CJADE-S are better in 
result and funtions G03, G04, G06,  G11 and G13 shows better result from SMES. The funtions G01, G08 and G012 are equal. The comparsion 

betwenn median values of algorithms, the functionsG02, G05, G07, G09 and G10  shown better results at CJADE-S algorithm and functions 

G03, G04, G06, G11 and G13 are better at SMES. The functions G01, G08 and G12 are equal in median value results. 
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6. Conclusion 

In this research work, we modify JADE algorithm to 

examine its capability for solving COPs. In proposed 

modified JADE, we introduce static penalty function in 

the selection scheme of JADE algorithm for handling 

optimization problems with constraints functions. 

The performance of algorithm CJADE-S, is tested on 

known COPs, CEC2006. The experimental results show 

the better performance of CJADE-S on most of the 

problems. 

In the future, the performance of CJADE-S algorithm 

will be compared with several techniques available in the 

research history, to check its effectiveness. We will study 

some more static penalty functions in this approach to 

enhance the reliability of the search technique for more 

COPs. 
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