
The Nucleus 54, No. 4 (2017) 197-204

www.thenucleuspak.org.pk

 197

Paki stan

The Nucleus

The Nucleus

 I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

 I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

A Technique of Code Clone Detection based on Defined Mechanism for Threshold Calculation

R. Mehboob, S. Shabbir and A. Javed*

Software Engineering Department, UET, Taxila, Pakistan

A R T I C L E I N F O

Article history :

Received : 11 June, 2017

Accepted : 09 November, 2017

Published : 31 December, 2017

Keywords:

Clone detection

Condition

Statements

Threshold

Tokenization

A B S T R A C T

Over the past few years the revolution in the technology and use of programming languages for

product development has made code reusability a common practice. Consequently the problem of code

cloning is also increasing leading to redundancy and increase in the maintenancet. The real motivation
of the proposed research work is to identify code clones from pair of codes that are going to be utilized

for a project under consideration. Existing practices such as control flow graphs (CFGs) and abstract

syntax tree (AST) promote a high level of abstraction by masking the inner details of the code.
Therefore, a strategy is needed to define the mechanism for calculation of the threshold value to

identify clones by considering the inner details of the code. This paper presents a defined mechanism

for the computation of threshold for code clone detection. Moreover, the inner details of the code are
examined by performing the comparative analysis of tokens and conditional clauses. The proposed

technique eliminates high level of abstraction caused by the use of CFGs. The proposed method is

tested on custom dataset of different sorting algorithms. Experimental results indicate the effectiveness
of the proposed method for code clone detection.

1. Introduction

In software engineering, it is essential practice to

manage the complexity and evolution of software systems.

Code clone occurs when developers systematically copy the

previously existing code which solved a similar problem to

the one they are currently trying to solve. Developers

commonly adopt this practice to minimize the development

time and effort. However, such kind of practices may

degrade the quality, violate the intellectual property rights

and make the code redundant. In code cloning, the copied

code is either modified by changing the names of variables

or operations. Sometimes the whole statement of the copied

program are deleted and relocated. Such clones are hardest

to detect. The standards for software quality are raised as

the level of complexity and abstraction of software system

has increased. Code clone detection is a quality assurance

technique that aims to detect those code fragments that are

similar to one another in any respect. The duplication of

code fragments in the software systems increase the size of

the code and hinders the maintainability. The quality of the

software systems can be improved by detecting the code

clones effectively.

Code clone detection techniques have been proposed to

address the issues associated with code duplication.

Pradhan et al. [1] implied a graph isomorphism technique to

identify the similar design patterns and their frequency.

However, there might be a possibility for the existence of

various algorithms of same programming problem with

different implementation. Li et al. [2] proposed an effective

vector based detection mechanism for code cloning through

function call that used the structure and properties of the

program. The features of the program based on function

calls were extracted and compared. The node of each

structure was identified and compared through two function

calling trees to identify the similarities in the two codes.

This method [2] is efficient, simple and less expensive but

it has been tested in C++ only. Gupta and Gupta [3]

presented a hybrid approach using Abstract Syntax Tree,

Program Dependence and Control Flow Graph techniques.

Li et al. [4] proposed a technique to measure the

resemblance in different programs; this technique consists

of two stages. In the first stage, program was converted into

a labeled graph. Weisfieler graph kernel was then computed

for the labeled graph in the second stage. The subsequent

results were eventually compared with the computed

kernels for other programs stored in the repository. The

abstraction property of this approach creates a limitation of

declaring only the isomorphic graphs as clones. In addition,

the hard coded threshold value also reduces the accuracy of

code clone detection. Tekchandani et al. [5] proposed a

method to extract the domain information from source

code. Abstract syntax tree was then created by tokenizing

and parsing the source code along with generating the data

and control flow graphs. Tokenization resolved the problem

of graph isomorphism. The complex modifications in the

code statements were detected effectively. However, it is

unable to handle the frequency of the identifiers as well as

similar code fragments in enormous amount of data.

Koschke [6] used the suffix tree for clone detection in large

scale systems. The similarity lying in the control flow

graphs (CFGs) and abstract syntax trees (ASTs) owing to

their control flow restricts the clone detection process. The

inner details of the code are masked by the techniques

[3-6].

Corresponding author : ali.javed@uettaxila.edu.pk

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

198

Sheneamer and Kalita [7] proposed a hybrid code clone

detection technique using coarse-grained and fine-grained

features to detect the gapped clone. The coarse grain

approach aimed at improving the precision and the fine

grain approach improved the recall. However, complex

modifications in two source codes cannot be detected

except white spaces, variable and function names.

Keivanloo et al. [8] proposed a threshold free approach for

detecting the gapped clones at method granularity. Ashish

[9] proposed a technique to categorize the clones into

separate clusters. K-mean clustering technique was used to

separate the clones automatically in each cluster. However,

there exists a possibility of clone presence in other clusters.

Higo and Kusumoto [10] presented a similar approach for

automatic clone detection in the fragments of codes during

code enhancement or bug fixing. However, two different

code files were compared line by line to detect the clones.

Kanagalakshmi and Suguna [11] proposed a technique of

code clones detection based on levenshtein distance for

static and dynamic websites. Singh and Kaur [12] proposed

a system based on Euclidean distance to uncover structural

clones of type-4 among the several simple clones. Weighted

frequent item set mining was exploited to find similar code

fragments. Clones having weight support greater than the

predefined threshold were selected. Similar fragments were

then clustered together to indicate high level clones. This

technique [12] is beneficial in terms of reducing the number

of repeated patterns, maintenance cost redundancy, code

and model refactoring. Kamiya [13] exploited frequent item

set mining algorithm upon the sequence of execution of

functions in order to detect the gapped clones. The presence

of similar code patterns in those items sets having weighted

support count less than predefined threshold limits the

detection of clones. Rajakumari and Jebarajan [14]

proposed a method to identify and evaluate the code clones

through data mining techniques. The evaluation stage

successfully filtered the valuable clones while discarding

the risky ones. Baxter et al. [15] proposed a tool for

detecting code clones by finding similar abstract syntax

trees (AST). Gplag method [16] based on program

dependent graphs was used to improve the plagiarism

detection.

Abdel-Aziz et al. [17] presented a technique to extract

precise clones using the differential file comparison

algorithm. Qu et al. [18] proposed a framework of pattern

mining to detect the code clones in large scale software

systems. Graph based mining was used in combination with

spatial space analysis to accommodate the simple changes

and complex modifications effectively. Moreover, pattern

analysis approach improved the performance while

reducing the computational cost and search complexity.

However, this technique only ensures manual switching

between the lossy and lossless spatial search although the

underlying redundancies should be detected automatically.

Su et al. [19] presented a method to identify the codes

having similar behavior on the execution time. Okutan and

Yildiz [20] exploited a kernel matrix to compute the

relationship between code similarity and failure that shows

the degree of similarity in the structural clones.

Tian et al. [21] proposed a thread related system calls

based approach for plagiarism detection in multithreaded

programs using the dynamic birth marking. Maskeri et al.

[22] emphasized on the violation of copyrights via

detecting plagiarism in the copyright code through mining

the software store houses. Flores et al. [23] applied the

latent semantic analysis approach to address the issue of

cross language duplication in reused code. Stojanovic et al.

[24] proposed a metric based approach that consider the

procedures from two codes for similarity detection.

Software metrics based on the language constructs were

defined through high level language and compiler

optimization techniques. However, the use of compiler

optimization metric based approach in binary codes lead to

low recall. Yuan et al. [25] designed a tool for the analysis

and representation of detected clones to facilitate the

developers for effective management and understanding of

clones. In addition, this tool also assists in clones

refactoring. Vale et al. [26] presented a repository of bad

smells and related refactoring methods for software product

line. Ouni et al. [27] presented a search based approach to

improve the automation process in code refactoring. The

development history of the software along with the

semantics and the structural information was used for

process improvement. Yamashita and Moonen [28]

examined how code smelling reflects the parameters

affecting the maintainability of the software based on an

empirical study. Hermans et al. [29] proposed an algorithm

for clone detection in the spreadsheet that leads to error

generation and data loss. Hauptmann et al. [30] introduced

a mechanism for the detection of code smells in the

tests written in the natural language. The extent of code

smell was also determined using the specified measures.

Li et al. [31] detected the copy and paste code fragments in

the code.

This paper presents a code clone detection method

based on a defined mechanism for threshold computation.

The proposed technique is based on a similar assumption

that codes having the same control flow may differ

logically. The motivation is to minimize the level of

abstraction to zero while considering the inner details of the

codes. The redundancy prevailing due to code clones

increase the computational time and cost to a considerable

factor. Similarly, the presence of code clones make

reusability and maintainability a difficult practice to pursue.

The proposed method consists of two stages. The threshold

value is computed by subtracting the number of lines

containing the unique identifiers from the number of lines

of the entire code. The block of code free of any unique

identifier, i.e., variables and keywords are retained for

further processing. Inner details of the code are considered

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

199

by extracting the tokens from the block of code based upon

the defined delimiters. Tokens of two source code files are

compared on the basis of lexical analysis (CLA). Similar

tokens are regarded as clones and error rate is computed.

Comparison on the basis of conditional block alleviates the

problem of considering the code fragments having same

control flow as clones. For comparison on the basis of

conditional block (CCB), conditional clauses are extracted

from the block of code based on two relational operators

(i.e. < or >). Threshold value is computed on the basis of

number of conditions. Statements within the conditional

block are extracted and their count is maintained.

Statements of the two source files are compared according

to the similarity of conditions. Two conditional blocks are

regarded as clones if their conditional clauses contain the

same operator (< or >) as well as similar number of

statements which are logically equivalent. The main

contributions of the proposed technique are:

1. Elimination of the high level abstraction while

unmasking inner details of the codes.

2. Uncover clones irrespective of control flow.

3. Comparison on the results of Lexical Analysis (CLA)

4. Comparison of Conditional Blocks (CCB)

5. Threshold value calculation for both phases.

The rest of the paper is organized as follows: Section 2

presents the proposed method of code clone detection.

Experimental results and discussion are provided in Section

3. Finally, Section 4 concludes the proposed work along-

with possible future extension.

2. Proposed Method

The proposed method consists of two phases. The first

phase provides a comparison on the results of lexical

analysis (CLA). CLA aims to unmask the inner details of

the code, thereby removing the abstraction. CLA compares

the extracted tokens and evaluates the results based on a

defined threshold. The second phase “Comparison of the

conditional blocks” (CCB) intends to alleviate the problem

of declaring the code fragments as clones on the basis of

similar condition in control flow graph (CFG). CCB aims to

compare statements on the basis of similarity of conditions

and evaluate the results according to the defined threshold.

Shown in Fig. 1 is the block diagram of the proposed

method.

2.1. Threshold Calculation

Automatic threshold computation is performed in the

proposed method to address the limitation of existing code

clone detection methods that are unable to provide any

defined mechanism for threshold calculation. Existing

approaches [4, 13, 18, 32, 33] use either random or any

hard coded threshold value. The performance of the existing

methods adopting these two criteria’s for threshold

selection degrades significantly on a large and diverse

dataset of codes. The proposed method resolves this issue

by automatically computing the threshold value as follows:

 A A ATh loc ui  (1)

Where ThA is the threshold value computed for the code,

locA refers to the total number of lines in the source code

and uiA represents the total number of unique identifiers

including the keyword and variables extracted from the

imported code file.

2.1.1. Unique identifiers

Unique identifiers are characterized as the specified

keywords of a programming language which are used as

reserved words within the code. The keywords cannot be

manipulated while solving any programming problem.

Reserve words may vary from language to language but

their utility is same across multiple languages. Identifiers of

Java language specified here include: (java, static, void,

public, private, protected, int, char, string, float, double,

long, unsigned, flag, args, class, extend, system, out,

println, print, scanner, nextInt, next, new, array list, if, do,

for, array, return, switch, case, default, break, continue).

The total count of extracted identifiers (both keywords and

variables) is also stored and maintained throughout the

process.

Fig. 1: Block diagram of proposed code clone detection method

2.1.2. Variables

Variables are the user-defined terms that are used in the

code to perform a certain task. Variables can be any letter

or word defined in the code. The collection of unique

identifiers and variables are summed up and subtracted

from the total lines of code to calculate the threshold. The

computed threshold defines the size of the code block free

of all unique identifiers i.e. keywords and variables. The

final comparison for clone detection is based on those lines

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

200

of code within the code block extracted on the basis of

defined threshold.

2.2 Phase 1: Comparison on the results of Lexical

Analysis (CLA)

CLA includes the lexical analysis which results in the

extraction of tokens. Each step of lexical analysis is

discussed in this section.

2.2.1 Tokenization

The first step involves creating tokens on the basis of

predefined delimiters. The delimiters can be semi colon (;),

Brackets (), { }, [], Special characters (!, &, ^, $, #, @, \)

and Operators (<, >, =, -, +, *, /, %), etc. The process of

extracting tokens from the imported code is called

tokenization. The total count of tokens is stored and

maintained throughout the process. The major step involved

in the lexical analysis is the extraction of tokens according

to the pre-defined delimiters during the process of

tokenization.

2.2.2 Clone detection comparison

A comparison of the two source code files in terms of

their similarity and difference is performed on a defined

mechanism. The extracted tokens for both files and their

counts are used for comparison. Clone detection

comparison is performed token by token with the two

imported files. If the two codes under consideration are

similar then clone is declared otherwise the two codes differ

and cannot be regarded as clones. Moreover, the total

number of detections is also maintained.

2.3 Phase 2: Comparison of Conditional Blocks (CCB)

CCB is the comparison of the extracted conditional

clauses. The entire block of conditions is extracted and

comparison is performed on each clause. The two extracted

conditional blocks from the two intended codes are then

further processed to extract the conditions and statements.

2.3.1 Conditional block

Conditional blocks consist of chunk of statements used

for decision making. In the first stage the entire conditional

block is stored in a new file and then retrieved for further

processing and evaluations when required. The conditional

block dictates the flow of the program as well. Two

programs may carry the same conditional blocks and their

flow may be similar. However, some conditions in the same

conditional block may be identical even though statements

differ. Similarly, some conditions may differ in the same

conditional blocks. The count of the conditions is

maintained and threshold is set with count greater than

zero.

2.3.2 Conditions

Conditions are the decision points in a program that

control the flow of the program. If a condition is true it may

enter in another loop containing further conditions. Within

a conditional block “if” and “else” are the driving sources

which may proceed or terminate a program depending on

the obtained results. Conditional clauses are accessed by

checking the presence of operators i.e. “<” or “>”. The

count of the conditions is stored and maintained as a

threshold for further processing. If the conditional clauses

of two conditional blocks are matched on the basis of less

than (<) or greater than (>) operators, then comparison is

performed on the basis of statements.

2.3.3 Statements

Statements are the actions performed on the validity or

absurdity of any condition. The comparison is performed

statement by statement in the two conditions of the

imported code files. The results of comparison are

evaluated in terms of clone detection. The conditions are

compared against the statements. If the number of the two

entities differs, then a sequential comparison is performed

against each statement. If two conditional clauses are same

then statements are compared. In case the statements of the

two programs are identical then it is declared as a clone. If

the statements differ as a result of comparison then it is not

regarded as a clone.

Major steps involved in the comparison of conditional

clauses are summarized as follows:

Step 1: Extraction of conditional block from the two

 imported code files.

Step 2: Extraction of conditions from the two conditional

 blocks.

Step 3: Extraction of statements from the extracted

 conditions.

2.3.4 Threshold calculation

Threshold of the CCB phase is dependent upon the

number of conditions. The comparison on the extracted

block of conditions yields individual conditions. The

threshold is based on the number of conditions and

statements lie above zero. Total count of conditions is

maintained and further comparison is performed on the

defined threshold computed as follows:

 cth n  (2)

Where th is the threshold, and nc is the number of extracted

conditions.

If th is greater than or equal to 1, then predicate clauses of

the conditional blocks are compared. However, conditions

are not compared if th is equivalent to zero.

2.3.5 Clone detection comparison

A comparison of the two source code files in terms of

their similarity and difference is performed on the block of

conditions. Comparison is performed statement by

statement along the two codes after the approval of the

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

201

validity of the conditional clauses. If the statements of the

two codes and their number of statements under

consideration are similar then it is declared as a clone

otherwise the two codes differ. The number of similar

tokens from Phase 1: CLA and similar statements from

Phase 2: CCB are maintained for computation of error rates

for both phases. Clones are maintained and further used to

calculate the error rate. The algorithm of the proposed

method is provided in Table 1.

Table 1: Defined mechanism for threshold calculation

 Input: Source Code

 Output: Clone Detections (Average Error rate)

Count lines of code; locA, locB

Extract Unique identifiers

Count unique identifiers; uiA, uiB

Calculate threshold

ThA= locA- uiA

ThB= locB- uiB

Extract rest of the lines of code uptill the ThAand ThB

Phase 1: CLA

Extract tokens on the basis of lexical analysis

Count total number of tokens, nt_A and nt_B

if nt_A>nt_B

 Compare the remaining tokens till nt_A

 if tokensA==tokensB

Tokens are similar

 else

 Tokens are not similar

else Compare the remaining tokens till nt_B

 if tokensA==tokensB

Tokens are similar

 else

 Tokens are not similar

Phase 2: CCB

Extract conditional blocks

CBA and CBB

Extract conditional clauses CA and CB from CBA and CBB,

Calculate threshold

threshA=n_CA

threshB=n_CB

Count_SA=statementsA

Count_SBstatementsB

if threshA&&threshB>0

 if CA== CB

 if Count_SA>Count_SB

Compare statements of the blocks till Count_SA

If statementsA== statementsB

Cloned

Else

 Not cloned

Else

 Compare statements till Count_SB

else

Conditions are not same

3. Results and Discussion

This section provides a discussion on the experiment

designed to evaluate the performance of the proposed

method. The results of the experiment are also reported and

compared with the existing methods. Moreover, the details

of the dataset is also provided.

Sorting is considered as a fundamental process for

algorithm design. Sorting is defined as the process of

rearranging elements in specific sequence either increasing

or decreasing. The sorting mechanism holds significant

importance in terms of cost reduction for the purpose of

accessing data. A customized dataset of different sorting

algorithms is used to evaluate the performance of the

proposed method. The dataset consists of sorting algorithms

such as bubble, selection, insertion, shell, merge, quick,

counting, bucket and heap sort. Since each sorting

algorithm provides a sorted list of elements in either

increasing or decreasing order but the way that each

algorithm sorts the elements can vary. In general sorting

techniques can be classified into two major categories i.e.,

comparison based sorting and non-comparison based

sorting. Comparison-based techniques [34] include sorting

the results achieved after comparison or a couple of

iterative comparisons as in selection sort, bubble sort quick

sort, heap sort, insertion sort and merge sort. Non

comparison-based techniques [34] include counting sort,

bucket sort, etc.

3.1 Performance Evaluation

Performance evaluation of the proposed algorithm is

tested on different sorting algorithms to measure the

effectiveness of our method.

An experiment is designed to process the two codes of

sorting algorithms for code clone detection at the same

time. Bubble sort and selection sort have the same control

flow but they differ in terms of their logic for sorting

purpose. Moreover, both are comparison-based algorithms.

File 1 contains source code of the bubble sort algorithm,

whereas, file 2 contains the source code of selection sort

algorithm. In bubble sort algorithm, each element is

compared to the rest of the elements in the array and

swapped if they are not in order. Selection sort algorithm

performs array sorting by repeatedly finding the minimum

or maximum element from the unsorted part and placing it

at the beginning. The algorithm maintains two sub arrays in

a given array.

Total number of lines of code is counted for both files.

File 1 contains 32 lines of code of bubble sort algorithm,

whereas, file 2 contains 28 lines of code of selection sort

algorithm. In the next step unique identifiers are extracted

from the file 1 that is 24 in this case. Threshold value for

file 1 is 8. Threshold value decides that these lines of code

are left which do not contain any unique identifier i.e.,

keywords and variables. The code blocks within the

computed threshold contains the functionality for sorting of

elements. Similarly, unique identifies from file 2 is also

extracted that are 13 in the present study. Threshold value

for file 2 is 15. These code blocks are further used

for comparison on the basis of lexical analysis (CLA) and

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

202

Table 2: Average error rate of detections for both phases

File 1
File 2
Sorting Algorithms

Detection (CLA) Detection (CCB) Average Error Rate (%)

Bubble Sort

Selection Sort 0 1 8.33

Quick Sort 3 0 0.25

Merge Sort 0 0 0

Insertion Sort 40 1 5.55

Shell Sort 2 1 5.35

Selection Sort

Quick Sort 0 0 0

Merge Sort 0 0 0

Insertion Sort 0 1 4.165

Shell Sort 0 2 8.33

Insertion Sort Merge Sort 0 0 0

Quick Sort 0 0 0

Shell Sort 0 1 5.55

Bucket sort

Bubble Sort 0 0 0

Selection Sort 0 0 0

Merge Sort 0 0 0

Quick Sort 0 0 0

Counting sort

Bubble Sort 0 0 0

Selection Sort 0 0 0

Insertion Sort 0 0 0

Heap sort

Bubble Sort 0 2 11.11

Selection Sort 0 2 6.25

Insertion Sort 0 2 6.25

comparison on the basis of conditional block (CCB). For

CLA all the extracted tokens based on delimiters are

compared for both files and number of detections is

maintained. Since two files have same conditional clauses,

so statements extracted for both blocks are compared and

number of detections is maintained for CCB. Tokens are

extracted from both files i.e. file 1 and file 2 according to

the predefined delimiters. All the generated tokens of both

files are compared with each other. No similar tokens are

detected so similarity is considered as false. Further

comparison is performed on the extracted conditional

blocks from which conditional clauses and statements are

extracted. Both conditional blocks i.e. CB1 and CB2

extracted from file 1 and file 2, respectively. Conditional

clauses extracted from both conditional blocks contain the

same operator. Threshold value is calculated according to

the number of conditions. So, threshold value for both

conditional blocks is greater than 1. Hence statements

within the conditional blocks are compared with each other

and number of similar statements is recorded. Finally error

rate is calculated for both phases using equations (3), (4)

and (5). No detections are observed in any of the phase,

therefore, average error rate is 0.

 _ 100 *100
_ _ _

CLA
CLA

detection
err rate

total no of comparisons
  (3)

 _ 100 *100
_ _ _

CCB
CCB

detection
err rate

total no of comparisons
  (4)

 _ _
_

2

CLA CCBerr rate err rate
avg err


 (5)

Where err_rateCLA, err_rateCCB and avg_err represents the

error rate of CLA, CCB, and average respectively.

The frequency of tokens can limit the proposed

technique to detect the repeated tokens with better

accuracy. The tokens that repeat frequently will be

displayed once in the output. Table 2 depicts the average

error rate of comparison based sorting algorithm files.

Fig. 2 shows the graphical representation of the results of

comparison.

3.2 Performance Comparison

Performance of the proposed method is compared

against existing state-of-the-art methods [4, 7, 16, 18, 24,

31]. Results of comparison with the existing techniques are

provided in Table 3. It can be observed from Table 3 that

the proposed method outperforms the existing state-of-the-

art methods of code clone detection.

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

203

Fig. 2: Performance Evaluation of proposed method on sorting algorithms

Table 3: Performance comparison with existing techniques

Code Clone Detection Methods Accuracy

Li et al. [4] 87.1%

Sheneamer and Kalita [7] 48.89%

Liu et al. [16] 91.5%

Qu et al. [18] 79%

Stojanović et al. [24] 43%

Li et al. [31] 83.5%

Proposed Method 97.22%

4. Conclusions

This paper presents a defined mechanism for the

calculation of threshold in clone detection. The proposed

technique is divided into two major phases. First phase

involves the comparison on the results of lexical analysis

i.e. tokenization. The extracted tokens and unique

identifiers are used for threshold calculation. The final

comparison of the two codes is performed on the basis of

threshold. The second phase is the comparison of the

conditional blocks in which conditions and statements are

compared based on a defined threshold. The results of the

two phases indicate the confirmation of either existence or

non-existence of the clone. The proposed technique is

significant in terms of eliminating high level of abstraction,

detecting the clones irrespective of their control flows. The

defined mechanism for threshold computation guarantees

the contribution of every single token in clone detection.

The average accuracy of 97.2% signifies the effectiveness

of the proposed method for code clone detection. The

proposed technique can be further extended by keeping

track of the frequency of particular token that appears in the

source code file.

References

[1] P. Pradhan, A. K. Dwivedi and S. K. Rath, "Detection of design

pattern using graph isomorphism and normalized cross correlation",
8th Int. Conf. Contemp. Comput., pp. 208–213, 2015.

[2] W. Li, D. Li, C. Qiu and J. Hou, "Efficient metric vector-based code
clone detection using function-calling tree", Int. J. Hybrid Inf.

Technol., vol. 8, no. 11, pp. 139–150, 2015.

[3] S. Gupta and P. C. Gupta, "A novel approach to detect duplicate code

blocks to reduce maintenance effort", Int. J. Adv. Comput. Sci.

Appl., vol. 7, no. 4, pp. 311–314, 2016.

[4] W. Li, H. Saidi, H. Sanchez and M. Sch, “Detecting similar

programs via the Weisfeiler-Leman graph kernel", Proc. of 15th Int.
Conf. on Software Reuse, pp. 315–330, 2016.

[5] R. Tekchandani, R. Bhatia and M. Singh, "Semantic code clone

detection for Internet of things applications using reaching definition

and liveness analysis", J. Supercomput., pp. 1–28, 2016.

[6] R. Koschke, "Large-scale inter-system clone detection using suffix

trees and hashing", J. Softw. Evol. Process, vol. 26, no. 8,
pp. 747–769, 2014.

[7] A. Sheneamer and J. Kalita, "Code clone detection using coarse and
fine-grained hybrid approaches", IEEE 7th Int. Conf. Intell. Comput.

Inf. Syst. ICICIS 2015, pp. 472–480, 2016.

[8] I. Keivanloo, F. Zhang, and Y. Zou, “Threshold-free code clone

detection for a large-scale heterogeneous Java repository”, IEEE

22nd Int. Conf. Softw. Anal. Evol. Reengineering, Proc. SANER
2015, pp. 201–210, 2015.

[9] A. Ashish, "Clones clustering using K-means", 10th Int. Conf. Intell.

Syst. Control, pp. 1–6, 2016.

[10] Y. Higo and S. Kusumoto, "How often do unintended inconsistencies
happen? Deriving modification patterns and detecting overlooked

code fragments", IEEE Int. Conf. Softw. Maintenance, pp. 222–231,

2012.

[11] K. Kanagalakshmi and R. Suguna, "Software refactoring technique

for code clone detection of static and dynamic website", Int. J.
Comp. Applications", vol. 107, no. 12, pp. 1–10, 2014.

[12] S. Singh and S. Kaur, "A systematic literature review: Refactoring
for disclosing code smells in object oriented software", Ain Shams

Eng. J., 2016.

[13] T. Kamiya, "An Execution-Semantic and Content-and-Context-

Based Code-Clone Detection and Analysis", Software Clones

(IWSC), IEEE 9th Int. Workshop, pp. 1–7, 2015.

[14] K. E. Rajakumari and T. Jebarajan, "A novel approach to effective

detection and analysis of code clones", Third Int. Conf. Innov.

Comput. Technol., pp. 287–290, 2013.

[15] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna and L. Bier, "Clone
detection using abstract syntax trees", Proc. Int. Conf. Softw. Maint.

(Cat. No. 98CB36272), pp. 368–377, 1998.

[16] C. Liu, C. Chen, J. Han and P. S. Yu, "GPLAG: detection of software

plagiarism by program dependence graph analysis", Proc. 12th ACM

SIGKDD Int. Conf. Knowl. Discov. data Min., pp. 872–881, 2006.

[17] R. M. Abdel-Aziz, A. E. Aboutabl and M. S. Mostafa, "Clone

detection using DIFF algorithm for aspect mining", Int. J. Adv.
Comput. Sci. Appl., vol. 3, no. 8, pp. 137–140, 2012.

[18] W. Qu, Y. Jia and M. Jiang, "Pattern mining of cloned codes in
software systems", Inf. Sci. (Ny)., vol. 259, pp. 544–554, 2014.

[19] F. H. Su, J. Bell and G. Kaiser, "Challenges in behavioral code clone
detection", IEEE 23rd Int. Conf. Softw. Anal. Evol. Reengineering,

SANER 2016, vol. 2, pp. 21–22, 2016.

[20] A. Okutan and O. Taner Yildiz, "A novel kernel to predict software

defectiveness", J. Syst. Softw., vol. 119, pp. 109–121, 2016.

[21] Z. Tian, T. Liu, Q. Zheng, M. Fan, E. Zhuang and Z. Yang,

"Exploiting thread-related system calls for plagiarism detection of

multithreaded programs", J. Syst. Softw., vol. 119, pp. 136–148,
2016.

R. Mehboob et al. / The Nucleus 54, No. 4 (2017) 197-204

204

[22] G. Maskeri, D. Karnam, S. A. Viswanathan and S. Padmanabhuni,

"Version history based source code plagiarism detection in

proprietary systems", IEEE Int. Conf. Softw. Maintenance, ICSM,
pp. 609–612, 2012.

[23] E. Flores, A. Barron-Cedeno, L. Moreno and P. Rosso, "Cross-
language source code re-use detection using latent semantic

analysis", J. Univers. Comput. Sci., vol. 21, no. 13, pp. 1708–1725,

2015.

[24] S. Stojanović, Z. Radivojević, and M. Cvetanović, "Approach for

estimating similarity between procedures in differently compiled
binaries", Inf. Softw. Technol., vol. 58, pp. 259–271, 2015.

[25] Y. Yuan, F. Zhang, and X. Su, "CloneAyz : An approach for clone

representation and analysis", Inf. Sci. Control Engg. (IEEE), pp. 252-

256, 2016.

[26] G. Vale, E. Figueiredo, R. Abilio, and H. Costa, "Bad smells in

software product lines: A systematic review", Proc. of 8th Brazilian

Symp. Softw. Components, Archit. Reuse, pp. 84–94, 2014.

[27] A. Ouni, M. Kessentini, S. Bechikh and H. Sahraoui, "Prioritizing

code-smells correction tasks using chemical reaction optimization,"
Software Quality Journal , vol. 23, no. 2. 2015.

[28] A. Yamashita and L. Moonen, "Do code smells reflect important

maintainability aspects?", IEEE Int. Conf. Softw. Maintenance,

ICSM, pp. 306–315, 2012.

[29] F. Hermans, M. Pinzger and A. van Deursen, "Detecting and

refactoring code smells in spreadsheet formulas", Empir. Softw.
Eng., vol. 20, no. 2, pp. 549–575, 2015.

[30] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas and
P. Braun, "Hunting for Smells in Natural Language Tests", Proc. of

Int. Conf. on Software Engg., no. 1, pp. 4–7, 2013.

[31] Z. Li, S. Lu, S. Myagmar and Y. Zhou, "CP-Miner: Finding copy-

paste and related bugs in large-scale software code", IEEE Trans.

Softw. Eng., vol. 32, no. 3, pp. 176–192, 2006.

[32] H. Kaur and R. Maini, “Identification of recurring patterns of code to

detect structural clones", Proc. of 6th Int. Adv. Comput. Conf.,
pp. 398–403, 2016.

[33] M. Abdelkader and M. Mimoun, "Clone detection using time series
and dynamic time warping techniques", Third World Conf. Complex

Syst., pp. 1–6, 2015.

[34] J. Alnihoud and R. Mansi, "An enhancement of major sorting

algorithms", Int. Arab J. Inf. Technol., vol. 7, no. 1, pp. 55–62, 2010.

