
The Nucleus 55, No. 2 (2018) 74-84

www.thenucleuspak.org.pk

74

The Nucleus

 I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

 I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

Modeling of Access Control System in Event-B

S. Hussain
1*

, S. Farid
2
, M. Alam

3
, S. Iqbal

2
 and S. Ahmad

4

1Department of Computer Science, University of Sahiwal, Sahiwal, Pakistan

2Department of Computer Science, Bahauddin Zakariya University, Multan, Pakistan

3ICCC, Informatics Complex, H-8, Islamabad, Pakistan

4Department of Computer Science, Government College of Commerce, Multan, Pakistan

A R T I C L E I N F O

Article history :

Received : 08 February, 2018

Accepted : 13 September, 2018

Published : 12 October, 2018

Keywords:

Formal methods,

Event-B,

RODIN,

Atelier-B provers,

Access control list

A B S T R A C T

Computer security is a major challenge in the current era of ubiquitous computing and the Internet.

The external security measures are good but not enough to secure software systems. That is why the

internal security of software systems is of much importance and more emphasis needs to be given to
describe internal design of software systems. Access control system is a mechanism to ensure the

internal security of software systems. There are various access control systems which are claimed to

provide a secure way to access the resources but in reality these systems have many loopholes and
drawbacks. Authentication and authorization are the major key elements of access control systems.

Authentication is a mechanism to verify unique identification of a user in the system, and authorization

is to grant access to a user to system resources. In this paper, a new generic and simplified model of
access control system is proposed which is based on formal methods. The formal method used in this

access control system is Event-B; Which is a formal specification and modeling language based on set

theory and first order logic. Authentication process ensures that which type of users are allowed to
access the system. In authorization mechanism it is ensured that a user is granted access to a system

resource only if he/she has access rights for that particular resource. The resulting formal models are

analyzed and verified by using RODIN tools.

1. Introduction

Now a day, more than half a billion people are using

Internet all over the world which has raised various security

issues. For example, attack from anywhere, sharing of

information, automated infection, hostile hosts or codes, are

few common issues. Such problems may cause damage to

software systems. Moreover someone may mount an attack

on an individual or on organization to corrupt the data or

steal the information [1]. To protect the data and valuable

information in the system, high security mechanisms are

required. Computer security generally means software

security which can be divided into two categories, i.e.,

external and internal securities [2]. The external security of

software systems consists of security measures such as

firewalls. The internal security measures ensure the secure

design and security mechanisms integrated into the system

design [3, 4]. Various studies reveal that security issues

have increased with the passage of time which has raised a

big question how to secure computer systems? Another

problem is complication of software systems and it is

almost impossible to develop breach free computer

systems. This is because security needs to set up user

accounts, passwords, access control of resources and

building a trust among the stack holders. The software

security was not given much importance in the past. There

are two major reasons for ignoring the security importance.

For software developers, security is compromised because

of timely delivery of software to market. For users and

administrators, security is compromised because of work to

be done in a convenient way. On the other hand, security

setup takes time without contributing anything to useful

outcome.

Access control systems provide a secure way to access

system resources by the legitimate users of the system.

Access control system (ACS) is a mechanism comprises of

set of policies to restrict the access of users to computer

resources. There are many access control systems which are

based on rigorous and strong controls; these are described

elsewhere [5]. The bases of an access control are

authentication and authorization. Authentication means

unique identification of user of a system while

authorization ensures which resource is allowed to a

legitimate user of a system. There is another component of

ACS called reference monitor which acts as guard to access

the resources. Gollmann [6] has described computer

security as a measure to keep computer resources safe from

unauthorized access. These measures include detection,

protection and reaction to illegal access. Computer security

can be classified in terms of confidentiality, integrity and

availability. Confidentiality is the prevention of

unauthorized discloser of data, integrity is the unauthorized

modification of data and availability is the prevention of

unauthorized withholding of data. There are different

algorithms to implement access control which include

access control matrices, capabilities and access control lists.

An access control matrix is a table in which subjects are
Corresponding author : shafiqhussain@bzu.edu.pk

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

 75

listed along the column and objects are listed along rows.

Here subjects represent the users and objects represent the

resource. The intersection of each row and column holds

the access rights for this subject and object. In capabilities

access rights are attached to the subject. These are stored as

part of subjects. Access control lists store the access rights

to an object; these are stored as part of object. Although

there exist various access control models in theory but these

are not very successful due to their limitations and

drawbacks. For example, Role Based Access Control

(RBAC) model is most widely used; however, its current

version is ambiguous and has various interpretations. Some

other improved versions of access control models [7, 8] are

not fully verified and are lacking of mathematical

foundation and proof.

A new generic and simplified formal model of access

control in Event-B has been developed in this research.

There are two main components of access control:

authentication and authorization. Formal specification is

described using contexts and machines available in

Event-B. Contexts are used to describe static part of the

model and machines are used to specify its dynamic part.

Invariants define constraints on the system. Guards define

security properties. Pre and post conditions are also defined

by guards. Stepwise refinement is used to develop the

formal models of the system gradually. Events are used to

define actual behavior of the system in terms of operations

by adding pre and post conditions.

The Event-B is a formal specification and modeling

language based on set theory and first order predicate logic.

The models developed in Event-B have been analyzed and

verified by using Atelier B provers which are available in

RODIN (Rigorous Open Development Environment for

Complex Systems) tools. The RODIN tool is used for the

specification and analysis of formal models developed in

Event-B [9, 10]. It is to be noted that light weight formal

methods are used because of usefulness and increasing

understandability of the model.

There exists a lot of work on modeling of access control

system but only the most relevant are critically analyzed

here. Harrisson, Ruzzo and Ullman (HRU) [11] have

defined a security policy model that applies to subjects,

objects and actions. These entities are required to be

introduced and updated on regular basis. Eventually the

security policy needs recording the permissions granted

which increases the complexity of the model. The Role

Based Access Control (RBAC) model is most widely used

model. However, its current form has various limitations

[12]. In this model, the security policy specification needs

to be clear in terms of structure of permission. The concept

of role hierarchy is ambiguous and has various

interpretations. Access control is needed in situations where

different subjects require different level of access for the

same resource. This is done by attaching access control list

with each subject in role-based-access control [13, 14]. A

subject is assigned different roles and access to resources is

granted based on the role of subject or user. In mandatory

access control [15, 16], different levels of subjects and

resources are created and access is granted to that subject

who has level greater than the level of a resource.

Authentication and authorization are major components

of an access control system as described earlier. Bishop

[17] has described authentication mechanism in which

unique identification of a user of the system is determined.

Belapurkar et al. [18] have described authorization as a

mechanism to determine the access for users in software

systems. The drawback of this model is to provide

redundant information that increases the complexity of the

model. Human resources and physical security is refined to

implement the policies at a lower level [19]. The social

domain of IT security is described and information is

processed in a digital domain such that the refinement is

done at the higher level policies [20]. The mistakes which

may occur during refinement of higher level policies by

external parties and insiders are addressed by Probst [21].

The informal description of policy alignment is presented

elsewhere [22, 23]. The higher level policies are stated and

specified with refinement of the system into components

[24, 25]. A formal theoretical approach is provided for

policy alignment with substantial practical implications in

terms of connecting existing methods for security analysis

[26]. There exist some authorization systems, for example,

for multi-agent systems [27], GRID structures [28], P2P

systems [29], federated scenarios [30] and cloud computing

[31] for distributed environments in general. Authentication

and authorization is usually done uniformly in distributed

systems, for example, in the Internet. Mostly, operating

systems, e.g., UNIX and Windows perform authentication

and authorization at a local level. Such operating systems

have a local database for user authentication in terms of

passwords and a local database of authorization in the form

of access control list. On the other side, a distributed system

may involve systems that belong to different organizations.

It is needed to have a uniform treatment of sharing the data

and making decision to allow or deny the access opposite to

local access controls. Some of the authorization systems,

mentioned above, are based on prototyping and the others

and do not provide any mechanism to describe hidden

semantics under the textual models. Such procedures may

cause inconsistencies between the semantics of the

authorization underlying the information. An authorization

model presented by Calero et al. [32] is based on semantic

web-based technologies represents the underlying

information focusing in the domain of information systems.

Some guidelines are provided for biometrics-based client-

server architecture for authentication in e-learning

environments for continuous user [33]. It is argued that

security issues need to be addressed at all levels of the

system development to ensure a secure and reliable system

implementation [34, 35]. In another interesting work, it is

focused on the security issues caused by unintended flows

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

76

of information in embedded systems [36]. In this work,

investigation is made on the logical flows both for implicit

and explicit flows which lay a solid foundation to

information flow security but this work is more related to

hardware security.

2. Problem Formulation

A secure system may be characterized with three titles.

The first one is specification or policy: what is it supposed

to do? The second one is implementation or mechanism:

how does it do? The last one is correctness or assurance:

does it really work? Computer users can describe

information security policy under the headings: secrecy,

integrity, availability and accountability [37]. Secrecy

means to control who can get the information. Integrity is to

control how information changes or use of resources.

Availability provides prompt access to information or

resources. Accountability is to keep record of users who

have access to information or resources.

Organizations protect their sensitive data by means of

implementing security policies which can be defined at

different levels of abstraction. Higher level policies provide

the assets of the organization. Physical security and IT

infrastructure transforms policies into implementable lower

level policies [38]. The security policy needs to be defined

accurately. The implementation of security is usually

divided into two parts, i.e., code and configuration. The

code is a program and the configuration is a mechanism in

terms of operations that controls the program which can

access control lists, folder structure, passwords, encryption

keys, etc. Bad programs, agents and tapping

communications are three main kinds of vulnerabilities

where the task of a security implementation is to defend

against such vulnerabilities. All these vulnerabilities are

existed due to poor design of software systems.

There are three types of access controls systems:

discretionary access control system, role based access

control systems and mandatory access control system. In

discretionary access control, access is granted to a user

based on the privileges and access level for the same

resource. It allows users to access only those components of

the resource for which access is granted. Its implementation

is an access control list (ACL), and to implement this type

of access, ACL is attached with each user. In role based

access control, roles are defined for users of the system.

Access to the system resources is granted to these roles, not

to users directly. To define role based access control, a list

of roles along with a list of mappings from roles to users is

defined. In mandatory access control, access level of users

and resources is defined. Access to system resources is

granted based on these levels. If the access level of a user of

the system is higher as compared to the access level of

system resources then access is granted. There are various

application-based access control systems ranging from

information systems to high security domains.

The proposed generic model for access control is shown in

Fig. 1, which provides a framework for implementing this

model. In contrast to other access control systems such as

role-based access control system, discretionary access

control system and mandatory access control system, this

access control system is based on the use of formal methods

at the design level. Formal methods are advanced rigorous

techniques for constructing correct software system. Many

critical software systems have been developed by using

formal methods. In this access control system formal

models of security properties: authentication and

authorization are specified using Event-B. The resulting

formal models are then verified by using RODIN tools.

These verified models are correct and more secure as

compared to other models as cited above. In this system,

guards control access of requests from user to use resources

with security. The information is usually encapsulated in

objects. Based on the predefined mechanism, the guards

decide whether the source is allowed to perform any

operation on the object or not. The decision is made based

on two kinds of information, namely, authentication and

authorization.

Fig. 1: Proposed access control model.

The authentication information is needed for the

principal who mades the request. The authorization

information is used to verify who is allowed to perform

operations on the object. Authentication and authorization

can be defined by the following questions:

 Authentication is done by answering the question “who

has requested access to system?” The requesting

people are called principals may be a person, groups,

machines or programs.

 Authorization can be provided after answering the

question “who is authorized to perform which kind of

operations on a particular object?”

Access control mechanism determines the access of a

subject who has proper access rights to a resource. The

subject may be a user, process acting on behalf of user or

some other entity. The resource may be any document, a

file, an entity or a hardware component. The access may be

read, write, append, execute or delete rights.

In this article, formal specification and analysis of

generic model independent of any system for authentication

and authorization is provided by using formal specification

language Event-B and RODIN tools [39]. Authentication

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

 77

process ensures that a user is allowed to access the system.

During authentication process the credentials provided by

the user are matched against the credentials already stored

in the system. If the credentials match, the user is

authenticated otherwise refused and no access is provided

to the system resources. A user is granted access to a

system resource only if he has access rights for that

particular resource. If a user does not have access rights for

a particular resource, access to that resource is denied.

Access is granted to a user depending upon the policy

already defined for the users.

3. Formal Methods

Clarke and Wilson [1] and Bowen et al. [40] have

defined formal methods as set of techniques and tools based

on mathematical logic, symbols, notations, and formulas to

specify design and analyse software as well as hardware

systems. Formal methods help developers to design

software systems in a precise way without ambiguities by

using formal specification languages [41]. The resulting

models can be analysed by using theorem provers and

model checkers [42]. Further, these models of software

systems can be verified and validated at the design level

before implementation. In this way, formal methods help to

check and analyse the desired behaviour of software

systems without implementing these in a programming

language [43]. Many real world software systems have been

successfully designed, verified and validated [44]. Formal

methods have been used successfully in complex systems

ranging from medical systems, air traffic control systems

[45, 46], space shuttle systems, weapon control systems,

railways systems to computer hardware systems. Formal

methods are very useful in the areas where exhaustive

testing of properties is not possible. The formal models

produced in this way are analysed at the design level

without implementing these in a programming language.

Event-B is a formal modeling and specification

language based on set theory developed by Abrial [9]. It is

a state based language which is built on B method. There

are two types of components in Event-B models: contexts

and machines.

Fig. 2: Machines and Contexts [9].

Contexts define the static properties and machines

define dynamic properties of its models. A context consists

of carrier sets, constants, axioms and extended contexts.

Carrier sets are used to define new data types. These are

independent with in a context and are non-empty. Constants

are declared in constants section of a context and their type

is defined by axioms in the axiom section of a context. A

machine can see a context to access data from the context

as shown in Fig. 2. An axiom is a predicate and used to

define types of carrier sets and constants. It is also used to

define additional constraints on carrier sets. Axioms define

theorems in the system. A context can extend another

context. All the carrier sets, constants and axioms of other

contexts are accessible in the extending context. Machines

define dynamic properties of a system in Event-B. A

machine can see contexts. All the sets, constants and

axioms declared and defined in a context are accessible in

machine. A machine consists of three elements: variables,

invariants and events. Variables represent the state of the

system and are declared in the carrier sets of a machine.

The invariants are used to define the type of variables,

constraints on the variables and other properties. Events

define the actual behavior of the system in terms of

operations. The state of the system changes due to

execution of events in the machine.

Fig. 3: Refinement in Event-B [9].

The variables in the machine represent the state of the

machine. The elements of events include names,

parameters, guards and actions. Names represent the names

of events. Parameters are used to declare local variables to

be used in the event. Guards are the conditions that must

always be true. Actions are the results of event execution.

Actions determine the values of variables of a machine.

There is special event in every machine of Event-B model.

This is called the initialization event. There are no

parameters, guards and actions in this event. This event is

only used to initialize state variables of a machine. The

most significant feature of Event-B is concept of refinement

as shown in Fig. 3. For a successful model in Event-B, a

machine must be consistent which means all the invariants

defined in a machine must be preserved all the time and if a

machine refines another machine, it must be consistent with

that machine.

4. Formal Specification of Access Control System

Formal model of access control system is developed

using Event-B in this section and then refined by adding the

authentication and authorization properties.

4.1 Initial Model

The model consists of static and dynamic aspects of the

system. The static model is defined in data context which

has four carrier sets, i.e., USER, CREDENTIAL,

RESOURCE and ACTION. The USER denotes the set of

all possible users. The CREDENTIAL specifies the set of

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

78

all possible credentials for the users. The RESOURCE

represents the set of all possible resources. Finally, the

ACTION denotes the set of all possible actions. In Event-B,

axioms define the constraints on the carrier sets and

constants defined in the contexts. There are four axioms

defined on the carrier sets in the context data as given

below.

These axioms ensure that all the carrier sets, USER,

CREDENTIAL, RESOURCE and ACTION, are finite

because Event-B handles only finite sets. In dynamic

model, machines define the behavior of the system. So, two

machines have been developed to model the dynamic

properties of the system. The machine InitialModel defines

the basic operations of the system. The other machine

SecurityPropertiesModel consists of authentication and

authorization. The machine InitialModel sees the context

data which means that all carrier sets, constants and axioms

defined in the context data are accessible by this machine.

This machine InitialMode defines variables for the users

of the system, resources defined in the system, actions that

are allowed on the system resources, the users that are

registered in the system and the access control list. The

values of these variables can change when events defined

on these variables are executed. Invariants define

constraints on the variables of a machine InitialModel. The

types of the variables and other constraints are defined by

invariants.

In the initialization event, variables are assigned initial

values. All the variables are initialized to empty sets which

ensure that at least one system state exists. The events

Add_User, Add_Resource, Add_Action and

Add_Allowable_Actions of InitialModel add a new user,

new resource, new action and assign allowable actions to

system resources, respectively. The safety guards define

type and ensure other constraints on these values in the

system.

Event: Add_Allowable_Actions

any a r

where

 grd1: r∈ resources

 grd2: a∈ℙ(ACTION)

 a_is_in_actions: a ⊆ actions

 r_not_in_domain: r∉ dom(allowable_actions)

 a_not_in_range: a∉ ran(allowable_actions)

then

 act1: allowable_actions ≔ allowable_actions ∪ {r↦a}

end

Event: Add_Action

any a

where

 grd1: a∈ ACTION

 grd2: a∉ actions

then

 act1: actions ≔ actions ∪ {a}

end

Event: Add_Resource

any r

where

 grd1: r∈RESOURCE

 grd2: r∉ resources

then

 act1: resources ≔ resources ∪ {r}

end

Event: Add_User

any u

where

 grd1: u∈USER

 grd2: u∉ users

then

 act1: users ≔ users ∪ {u}

end

Event: Initialisation

begin

users ≔∅

resources ≔∅

actions ≔∅

allowable_actions ≔∅

registered_users ≔∅

access_control_list ≔∅

end

Sees: InitialModel sees Data

Invariants:

users ∈ℙ(USER)

resources ∈ℙ(RESOURCE)

actions ∈ℙ(ACTION)

allowable_actions ∈RESOURCE⇸ℙ(ACTION)

registered_users ∈USER⤔ℙ(CREDENTIAL)

access_control_list ∈USER⇸ (RESOURCE⇸ℙ(ACTION))

Variables:

users, resources, actions,
allowable_actions,

registered_users,

access_control_list

axioms:

finite (USER)

finite (CREDENTIAL)

finite (RESOURCE)

finite (ACTION)

Carrier Sets: USER,
CREDENTIAL,

RESOURCE, ACTION

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

 79

The events Add_Registered_User and

Add_Access_Control_List, register users in the system that

are already recognized by the system and grant access to

these registered users to resources along with actions

assigned to these resources. The safety guards ensure types

and other constraints on these users, resources and actions

defined.

The events Remove_Access_Control_List,

Remove_Registered_User and Remove-User, remove users

from the access control list, registered users and users from

the system, respectively.

The events Remove_Allowable_Actions and

Remove_Resource, remove allowable actions assigned to a

resource and resources from the system.

Event: Remove_Resource

any r

where

 grd1: r∈ resources

 r_is_in_domain: r∈

 dom(allowable_actions)

 r_not_in_ACL: {r↦

 allowable_actions(r)} ∉

 ran(access_control_list)

then

 act1: resources ≔ resources ∖ {r}

 act2: allowable_actions ≔

 allowable_actions ∖ {r↦

 allowable_actions(r)}

end

Event: Remove_Allowable_Actions

any r a

where

 grd1: r∈ resources

 grd2: a⊆ actions

 grd3: (r↦a) ∈ allowable_actions

 grd4: {r↦a} ∉ ran(access_control_list)

then

 act1: allowable_actions ≔

 allowable_actions ∖ {r↦a}

end

Event: Remove_User

any u

where

 grd1: u∈ users

 grd2: u∉ dom(registered_users)

 grd3: u∉ dom(access_control_list)

then

 act1: users ≔ users ∖ {u}

end

Event: Remove_Registered_User

any u

where

 grd1: u∈ users

 grd2: u∈ dom(registered_users)

 grd3: u∉ dom(access_control_list)

then

 act1: registered_users ≔ registered_users ∖{u↦ registered_users(u)}

end

Event: Remove_Access_Control_List

any u a r

where

 grd1: u∈ users

 grd2: u∈ dom(registered_users)

 grd3: r∈ resources

 grd4: r∈ dom(allowable_actions)

 grd5: a∈ℙ(ACTION)

 grd6: a⊆ allowable_actions(r)

 grd7: r∈ dom(allowable_actions)

 grd8: u∈ dom(access_control_list)

then

 act1: access_control_list ≔

access_control_list ∖ {u↦ {r↦a}}

end

Event: Add_Access_Control_List

any u a r

where

 grd1: u∈ users

 grd2: u∈ dom(registered_users)

 grd3: r∈ resources

 grd4: r∈ dom(allowable_actions)

 grd5: a∈ ℙ(ACTION)

 grd6: a⊆ allowable_actions(r)

 grd7: r∈ dom(allowable_actions)

 grd8: u∉ dom(access_control_list)

then

 act1: access_control_list ≔ access_control_list ∪ {u↦ {r↦a}}

end

Event: Add_Registered_User

any u crdls

where

 grd1: u∈ users

 grd2: crdls∈ℙ(CREDENTIAL)

 grd3: u∉ dom(registered_users)

 grd4: crdls∉

 ran(registered_users)

then

 act1:registered_users≔

 registered_users ∪ {u↦crdls}

end

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

80

The event Remove_Actions removes actions from the

system. The safety guards ensure constraints on the values

of actions and resources.

The Initial Model has been completed now. All the

basic features of this access control system have been

completed. All the operations such as addition of a user,

addition of resource and addition of actions for resources

have been completed. Also, the operations such as removal

of users, removal of resource and removal of action have

been completed.

4.2 Model Refinement

Every machine in Event-B can refine other abstract

machines. All the data of the machines being refined is

accessible in the refining machine. The refining machine

can add more details in the model. In this way models are

developed gradually in layers. In the Initial Model machine,

the basic functionality and operations of access control

system have been described. The machine Security

Properties Model refines Initial Model machine and adds

authentication and authorization properties through

refinement. This machine sees the context Data which

means all the carrier sets, constants and axioms are

accessible in this machine. This machine defines new

variables for authenticated users and authorized users. The

variables represent state of the system and are initialized to

as empty sets and to ensure that at least one system state

exists. Invariants define constraints on the system and

properties that must remain true during the operations.

These invariants define the types of the variables declared

in this machine.

The event Adding_Authenticated_User, authenticates

the users who are registered users in the system. The safety

guards ensure constraints on these values in the system. The

event Adding_Authorized_Users, authorize a user who is

already authenticated in system and assign access to various

resources available in the system.

The event Remove_Authenticated_User, removes

authenticated users from the system. Safety guards ensure

that the user to be removed is registered and authenticated

user and is not an authorized user.

Event: Adding_Authorised_Users

any u r a

where

 grd1: u∈ users

 grd2: u∈ dom(registered_users)

 grd3: u∈ dom(authenticated_users)

 grd5: r∈ resources

 grd6: a∈ℙ(ACTION)

 grd7: (r↦a) ∈ allowable_actions

 grd8: (u↦ {r↦a})∈access_control_list

 grd9: u∉ dom(authorized_users)

then

 act1: authorized_users ≔ authorized_users ∪ {u↦r}

end

Event: Adding_Authenticated_User

any u crdls

where

 grd1: u∈ users

 grd2: crdls∈ℙ(CREDENTIAL)

 grd3: u∈ dom(registered_users)

 grd4: u∉ dom(authenticated_users)

 grd5: crdls∉ran(authenticated_users)

then

 act1: authenticated_users ≔ authenticated_users ∪ {u↦crdls}

end

Event: Initialisation

begin

authenticated_users ≔∅

authorized_users ≔∅

end

Sees:

SecurityPropertieslModel sees Data

Refines:

SecurityPropertiesModel refines InitialModel

Invariants:

authenticated_users ∈USER⤔ℙ(CREDENTIAL)

authorized_users ∈USER⤔ℙ(CREDENTIAL)

Variables:

Authenticated_users,

authorized_users,

Event: Remove_Actions

any a r

where

 grd1: r∈ resources

 grd3: a⊆ actions

 r_not_in_domain: a∉ ran(allowable_actions)

 a_not_in_ACL: {r↦a} ∉ ran(access_control_list)

then

 act1: actions ≔ actions ∖a

end

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

 81

The machine Security Properties Model, defines

authentication property and authorization property through

refinement. These properties are the essence of this

proposed access control system.

5. Formal Verification

Describing even specification using formal languages

does not provide confidence about complete correctness of

a system. It requires validation and verification of the

system for surety. Formal analysis of the access control in

this regard is provided by using various available facilities

of RODIN.

5.1 RODIN Tool

RODIN is a tool used for formal modeling and

developing software systems in Event-B. The graphical

user interface of RODIN platform consists of two parts:

modeling perspective and proving perspective. The purpose

of modeling perspective is writing and analyzing Event-B

specifications. There are three main sections in it: Event-B

explorer, editor and problem view. The explorer shows all

the projects, contexts and machines in the projects. The

editor is used to write formal specifications of models and

problem view, displays errors in the specification. The

proving perspective generates formal proofs and discharge

proof obligations of the models. It comprise of five main

sections. The first one, proof tree section, represents all the

steps carried out to complete the proof. The second section

shows the invariant or event for which proof obligation is

generated. The third section describes the goal to be proved.

The fourth one proof control section highlights different

provers available to be applied for generating proofs and

discharging proof obligations. These provers are the Atelier

B provers. Event-B explorer expresses all the machines and

contexts. The RODIN tool consists of three components:

static checker, proof obligation generator and proof

obligation manager. The static checker is responsible for

checking syntax and typing errors in the models. The proof

obligation generator is responsible for generating proof

obligations. The proof obligation manager is responsible for

the management of proof obligations and related proofs.

The tasks such as proof status, generation of proof rules and

construction of proof trees are performed by the proof

obligation manager. For the generation of proof rules, the

proof obligations manager makes use of reasoners. RODIN

is an open source platform and is extensible. Many plugins

are available for RODIN platform such as ProB, ProR,

Brama, AnimB, UML-B and Camile editor.

6.2 Verification Mechanism

Formal models of access control system, designed here,

consist of one context and two machines. The context of the

model includes data and the machines including

InitialModel and SecurityPropertiesModel. In this section,

verification of these models is presented. If all of the proof

obligations are discharged then the resulting models are

verified as shown in Fig. 4. In RODIN, provers run

automatically when a specification in Event-B is saved and

all the associated proof obligations are discharged. But

some of the proof obligations are not discharged

automatically. To discharge these proof obligations and

verify the formal models, provers are run by the user and

different tactics are applied.

Fig. 4: Verification of formal models.

Fig. 5 shows snapshot of the verification of the static

models of the system. In Event-B explorer window, proof

obligations of the context are turned green which means

that the model of this context is consistent and there is no

voilation of any axiom defined in it.

Event: Remove_Authorised_User

any u r a

where

 grd1: u∈ users

 grd2: u∈ dom(registered_users)

 grd3: u∈ dom(authenticated_users)

 grd5: r∈ resources

 grd6: a∈ℙ(ACTION)

 grd7: (r↦a) ∈ allowable_actions

 grd8: (u↦{r↦a})∈ access_control_list

 grd9: (u↦{r↦a})∈ authorized_users

then

 act1: authorized_users ≔

 authorized_users

 ∖ {u↦ {r↦a}}

end

Event: Remove_Authenticated_User

any u

where

 grd1: u∈ users

 grd2: u∈ dom(registered_users)

 grd3: u∈ dom(authenticated_users)

 grd4: u∉ dom(authorized_users)

then

 act1: authenticated_users ≔

 authenticated_users ∖ {u↦

 authenticated_users(u)}

end

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

82

Fig. 5: Formal verification of static model.

The dynamic model of the access control system

consists of machines: InitialModel and SecurityProperties

Model. Each of these machines contains invariants, events

and guards within events. Verification of these constructs

means that there is no proof obligation associated with

these constructs. Fig. 6 shows snapshop of the verification

of the initial model. In this figure, the proof obligations

associated with the invariants, events and guards are green

which means all the proof obligations are discharged

successfully and the model is consistent and verified. In

verification of SecurityPropertiesModel, the associated

proof are done and there is no proof obligation remains

undischarged and the model of this machine has been found

consistent.

7. Conclusion

A new generic simplified formal model of access

control independent of any system has been presented.

Event-B is a formal specification and modeling language

used for the modeling of this security critical system

underhand. The layer-wise approach has been used to

develop the model by refinement. In the first layer, static

model of the access control system is developed. Then

dynamic model of the system is described based on the

static model. This dynamic model is refined by integrating

authentication and authorization security properties. The

invariants and constraints on the critical information are

used to define the security properties in static part of the

model. Further the security is ensured by defining pre and

post conditions on the operations describing behavior of the

system. These conditions are implemented through guards

by predefined procedures which decide whether the source

is allowed to perform any operation on the object or not.

Finally, the model is verified using various facilities of

RODIN tools where Atelier B Provers has been utilized as

plugin. The results verify the both static and dynamic

models successfully. The model can be applied to real

scenarios for its evaluation in future.

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

 83

Fig. 6: Formal Verification of Initial Model

References

[1] D.D. Clark and D.R. Wilson, “A comparison of commercial and

military computer security policies”, IEEE Symposium on Security
and Privacy, pp. 184–184, 1987.

[2] S. Hussain, P. Dunne and G. Rasool, “Formal Specification of
Security Properties using Z Notation”, Research Journal of Applied

Sciences, Engineering and Technology, vol. 5, no. 19, pp. 4664–

4670, 2013.

[3] S. Hussain, G. Rasool, M. Atef and A.K. Shahid, “A review of

approaches to model security into software systems”, Journal of
Basic and Applied Scientific Research, vol. 3, no. 4, pp. 642–647,

2013.

[4] S. Hussain, G. Rasool, M. Atef and A.K. Shahid, “FDMSWAP:

Formal Development Methodology for Secure Web Applications”,

Journal of Basic and Applied Scientific Research, vol. 3, no. 4,
pp. 1123-1128, 2013.

[5] T.S. Hoang, D. Basin and J.-R. Abrial, “Specifying access control in

Event-B”, Technical Report, vol. 624, 2009.

[6] D. Gollmann, “Computer Security”, Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, no.5, pp. 544-554, 2010.

[7] J. Barkley, K. Beznosov and J. Uppal, “Supporting relationships in
access control using role based access control”, Proceedings of the

fourth ACM workshop on Role-based access control, pp. 55–65,
1999.

[8] E.C. Cheng, “An object-oriented organizational model to support

dynamic role-based access control in electronic commerce”,

Decision Support Systems, vol. 29, no. 4, pp. 357–369, 2000.

[9] J.R. Abrial, Modeling in Event-B: System and Software

Development, Cambridge University Press, 2010.

[10] J.R. Abrial, “Formal methods: Theory becoming practice”, J. UCS,

vol. 13, no. 5, pp. 619–628, 2007.

[11] M.A. Harrison, W.L. Ruzzo and J.D. Ullman, “Protection in

operating systems”, Communications of the ACM, vol. 19 no. 8,
pp. 461-471, 1976.

[12] S.I. Gavrila and J.F Barkley, “Formal specification for role based
access control user/role and role/role relationship management”,

Proceedings of the third ACM workshop on Role-based access

control, October 1998, pp. 81-90.

[13] E. Bertino, P.A Bonatti and E. Ferrari, “TRBAC: A temporal role-

based access control model”, ACM Transactions on Information and
System Security (TISSEC), vol. 4, no. 3, pp.191-233, 2001.

[14] R. Sandhu, D. Ferraiolo and R. Kuhn, “The NIST model for role-
based access control: Towards a unified standard”, ACM Workshop

on Role-based Access Control, pp. 1-11, July 2000.

[15] D.E. Bell and L.J. LaPadula, “Secure computer systems:

Mathematical foundations”, Mitre Corp Bedford MA, vol. 1,

no. MTR-2547, 1973.

[16] K.J. Biba, “Integrity considerations for secure computer systems”,

Mitre Corp Bedford MA, vol. 1, no. MTR-3153, 1977.

S. Hussain et al. / The Nucleus 55, No. 2 (2018) 74-84

84

[17] M.A. Bishop, “The art and science of computer security, Addison-

Wesley Longman Publishing Co., Inc., 2002.

[18] A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan,

S. Padmanabhuni and S. Sundarrajan, “Distributed systems security:

issues, processes and solutions”, John Wiley & Sons, 2009.

[19] R. Baskerville, and M. Siponen, “An information security meta-

policy for emergent organizations”, Logistics Information
Management, vol. 15, no. 5/6, pp. 337-346, 2002.

[20] J. Rees, S. Bandyopadhyay and E.H. Spafford, “PFIRES: A policy
framework for information security”, Communications of the ACM,

vol. 46, no 7, pp.101-106, 2003.

[21] C.W. Probst, R.R. Hansen and F. Nielson, “Where can an insider

attack?”, Proc. of International Workshop on Formal Aspects in

Security and Trust, Heidelberg, Berlin: Springer, , pp.127-142, 2004.

[22] M. Abrams, and D. Bailey, “Abstraction and refinement of layered

security policy”, Information Security: An Integrated Collection of
Essays, pp.126-136, 19995.

[23] I.M. Olson and M.D. Abrams, “Information security policy”,
Information Security: An Integrated Collection of Essays, 1995.

[24] D. Pavlovic and D.R. Smith, 2003. “Software development by
refinement”, Formal Methods at the Crossroads from Panacea to

Foundational Support, Heidelberg, Berlin: Springer, 2003, pp. 267-

286.

[25] D. Sannella and A. Tarlecki, “Foundations of algebraic specification

and formal software development”, Springer Science & Business
Media, 2012.

[26] W. Pieters, T. Dimkov and D. Pavlovic, “Security policy alignment:

A formal approach”, IEEE Systems Journal, vol. 7, no. 2, pp.275-

287, 2013.

[27] S. Fugkeaw, P. Manpanpanich and S. Juntapremjitt, “A hybrid multi-

application authentication and authorization model using multi-agent

system and PKI”, Proc. of the Fourth IASTED Asian Conference on
Communication Systems and Networks, ACTA Press, pp. 96-101,

March 2007.

[28] J. Li, and D. Cordes, “A scalable authorization approach for the

Globus grid system”, Future Generation Computer Systems, vol. 21,

no. 2, pp. 291-301, 2005.

[29] E. Palomar, J.M. Estevez-Tapiador, J.C. Hernandez-Castro and

A. Ribagorda, “Certificate-based access control in pure p2p
networks”, Sixth IEEE International Conference on Peer-to-Peer

Computing, pp. 177-184, 2006.

[30] O. Cánovas, A.F. Gómez-Skarmeta, G. López and M. Sánchez,

“Deploying authorization mechanisms for federated services in

eduroam (DAMe)”, Internet Research, vol. 17, no. 5, pp.479-494,

2007.

[31] A. Gbadegesin, R. Batoukov and D.R. Reed, “Flexible scalable

application authorization for cloud computing environments”,

U.S. Patent 8,418,222, Microsoft Corporation, 2013.

[32] J.A Calero, G.M. Perez and A.G. Skarmeta, “Towards an

authorisation model for distributed systems based on the Semantic

Web”, IET information security, vol. 4, no. 4, pp.411-421, 2010.

[33] A. Moini, and A.M. Madni, “Leveraging biometrics for user

authentication in online learning: A systems perspective”, IEEE
Systems Journal, vol. 3 no, 4, pp. 469-476, 2009.

[34] D. Arora, S. Ravi, A. Raghunathan and N.K. Jha, “Hardware-assisted
run-time monitoring for secure program execution on embedded

processors”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 14, no. 12, pp. 1295-1308, 2006.

[35] D.D. Hwang, P. Schaumont, K. Tiri and I. Verbauwhede, “Securing

embedded systems”, IEEE Security & Privacy, vol. 4, no. 2,

pp.40-49, 2006.

[36] D. Mu, W. Hu, B. Mao and B. Ma, “A bottom-up approach to
verifiable embedded system information flow security”, IET

Information Security, vol. 8, no. 1, pp. 12-17, 2014.

[37] M. Abadi and R. Needham, “Prudent engineering practice for

cryptographic protocols”, IEEE transactions on Software

Engineering, no. 1, pp. 6–15, 1996.

[38] P. England, B. Lampson, J. Manferdelli and B. Willman, “A trusted

open platform”, Computer, vol. 36, no. 7, pp. 55-62, 2003.

[39] J.R. Abrial and S. Hallerstede, “Refinement, decomposition and

instantiation of discrete models: Application to Event-B”,
Fundamenta Informaticae, vol. 77, no, 1-2, pp. 1-28, 2007.

[40] J.P. Bowen, K. Bogdanov, J.A. Clark, M. Harman, R.M. Hierons and
P. Krause, 2002, August. “FORTEST: Formal methods and testing”,

in Proc. of IEEE 26th Annual International of Computer Software

and Applications Conference, pp. 91-101, August 2002.

[41] J.R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta and

L. Voisin, “Rodin: An open toolset for modelling and reasoning in
Event-B”, Int. Journal on Software Tools for Technology Transfer,

vol. 12, no. 6, pp. 447-466, 2010.

[42] P. Bjesse, “What is formal verification?”, ACM SIGDA Newsletter,

vol. 35, no. 24, p. 1, 2005.

[43] L. Ma and J. J. Tsai, “Formal modeling and analysis of a secure

mobile-agent system”, IEEE Transactions on Systems, Man and

Cybernetics-Part A: Systems and Humans, vol. 38, no. 1, pp. 180–
196, 2008.

[44] J. Bendisposto, M. Jastram, M. Leuschel, C. Lochert,
B. Scheuermann and I. Weigelt, “Validating Wireless Congestion

Control and Realiability Protocols using ProB and Rodin”,
Workshop on Formal Methods for Wireless Systems, August 2008.

[45] N.A. Zafar, “Safety control management at airport taxiing to take-off

procedure”, Arabian Journal for Science and Engineering, vol. 39,

no. 8, pp. 6137-6148, 2014.

[46] N.A. Zafar, “Formal Model of Aircrafts Safety Separation”,

International Journal of Innovative Computing, Information and

Control, vol. 10, no. 4, pp. 1401-1412, 2014.

