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A B S T R A C T 

Cellular arrangement is considered beneficial for the distribution of heavy workload, resource utilization 

and fast paced production. In such mechanisms, machines, tools and product features are classified into 

different cells. Such arrangement impacts the overall performance of system in the form of productivity 
and throughput. In current study, serial, parallel and tubular systems have been analyzed with multiple 

variants of each production system. The objective is to select variants on the basis of optimal production 

time, least cost and higher productivity. Two methods have been used owing to the complex and 
combinatorial nature of the problem. Initially, a modified version of Non Sorting Genetic Algorithm 

(NSGA-II) has been used to provide Pareto fronts where possible candidates for optimum solution have 

been presented. A Multi Attribute Decision Making (MADM) approach of Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS) criteria has been used to select the best compromise 

of optimal result. The results show that the objectives of cost, time and productivity are in conflict with 

each other and a global solution cannot be attained against the optimal values of all objectives. Also, an 
increased productivity can be assured by reducing the total time with an increase in cost.  

 

1. Introduction 

In modern manufacturing, enterprises are urged to 

simultaneously lower their costs/lead times, improve 

processes and provide optimal quality products. Such 

challenges are exacerbated by market competition and 

scarcity of resources. These resources such as, raw material, 

machines, personnel and space are considered a scarce 

commodity and their optimal use is imperative for sustainable 

production. The space constraint, in particular, impacts the 

performance of production as different machines can be 

arranged in several different ways in the available space [1]. 

For example, one of the classical arrangement of machines is 

serial line which ensures high throughput, however, it has 

been insignificant for smooth information flow. On the other 

hand, a U-shape assembly line although takes more time in 

transferring products, it has been considered viable for zero-

defects strategy and information sharing. Normally, cells are 

formed by arranging machines in clusters using the approach 

of Group Technology (GT). The GT has attained more 

research attention as it helps in forming groups of 

machines/products on the basis of operational similarity [2]. 

Due to this similarity, maximum work can be performed using 

less number of machines by minimizing the capability 

overlap.   

The Cellular Production System (CPS) is a type of GT 

which divides a production system into cells. Each cell 

contains multiple machines according to operational 

requirements. One of the motives behind the application of 

CPS is to reduce inter and intra cellular movement of 

equipment/material. It also helps in minimizing queue length, 

work-in-process time, waiting time and idleness of machines. 

Furthermore, such approaches are helpful in managing 

bottlenecks and dependency constraints. In inventory 

modeling problems, significant effect of GT has been 

demonstrated on material handling and lead times [3]. 

Similarly, cell formation problems have been considered 

more frequently in the concerned literature and these 

problems can be divided into products and machine variants. 

A cellular system designed on the basis of product is called 

part family system while machine arrangement is treated as 

machine cells [4]. The concept of GT is implemented in 

production by cellular arrangement, where GT is a philosophy 

for exploiting similar product features/processes. A 

fundamental issue is the determination of part families and 

machine cells. This issue is known as the Cell Formation (CF) 

problem which involves the decomposition of a production 

system into feasible cells. This study considers machine based 

cell formation problems in a typical Cellular Production 

System (CPS). 

The rest of the study is organized as follows. Section 2 

describes the literature and background of CPS and section 3 

contains the solution approaches namely, NSGA-II and 

TOPSIS. Section 4 describes the relevant results while section 

5 concludes the study. 

2. Cellular Production System (CPS) 

The concerned literature addresses a diverse range of 

problems related to cell formation. These problems have been 

solved using different techniques such as, mathematical 

modeling and algorithms. For example, Mak et al. [5] 

presented an approach of cell creation and scheduling by 

using a mathematical model and Ant Colony Optimization 

(ACO) approach. Instead of analyzing cellular systems on the 
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single criterion of throughput, Shang and Tadikamalla [6] 

developed a multi-criteria approach. In particular, flow time, 

work-in-process and waiting time were used as performance 

criteria. The analysis was presented on the basis of Taguchi 

design and response surface methodology. In another study, 

Liu et al. [7] used a dynamic cellular system for presenting 

integrated issues of facility transfer and planning. A novel 

bacteria foraging algorithm (IBFA) was implemented to 

minimize the operation cost.  

It is important to specify the number of cells in advance in 

order to efficiently group machines. To do so, 

Mukattash et al. [8] used Sterling number to develop a 2-cell 

formation with unbounded size. An exact algorithm was 

applied to provide the system designer with flexibility of 

selection. In another study, Solimanpur et al. [9] performed 

the synthesis of inter-cell layout problem. The authors 

proposed an ant algorithm and the results were compared with 

different facility layout algorithms to prove its robustness.  

A novel heuristic approach which combined Particle 

Swarm Optimization (PSO) with neural networks was applied 

by Mahmoodian et al. [10] to cell formation problem. The 

integrated approach provided improved results compared to 

the literature based findings. Similarly, Soto et al. [11] 

analyzed the cell formation problem by grouping machines 

into different cells. The goal was to identify organization of 

cells in order to minimize the transportation of parts between 

cells. A dynamic cellular problem was tackled by 

Rabbani et al. [12] by considering a multi-objective model. 

The problem consisted of part family formation and 

operators’ assignment. The optimization of cost, labor 

utilization and variance of workload was carried out using 

linearly implemented GAMS, non-sorting genetic algorithm 

(NSGA-II) and multi-objective particle swarm optimization 

(MOPSO) approaches. In another study, Wang et al. [13] 

integrated the problems of cell formation and task scheduling. 

The model assigned available workers to appropriate 

machines/cells. 

The cellular system offers multi-fold advantages, such as, 

minimization of set-up time, work-in-process inventory and 

delivery schedules. Asokan et al. [14] demonstrated that CPS 

is more effective in terms of simplified design of products, 

minimal tooling and improved human efficiency. A well-

defined and integrated CPS system helps in improving 

production efficiency by using appropriate layout and 

material transportation between cells. Approximately 

40-70% of overall production cost can be attributed to these 

factors [15]. The class of CPS problem considered here is 

related to facility layout which is defined as “identification of 

optimal location for arrangement of resources to utilize the 

space efficiently” [16]. In this study, three layouts (L1: serial 

production line (SPL), L2: parallel production line (PPL) and 

L3: U-shape or tubular production line (TPL)) have been 

considered as shown in Table 1. Within each layout, three 

variants (CO1, CO2 & CO3) have been analyzed and the 

difference between these variants is the production order as 

well as machine allocation. The problem complexity is 

enhanced by the fact that in each layout, different number of 

machines have been considered. For instance, 4, 6 and 7 

machines have been used respectively in SPL, PPL and TPL. 

A product with five (5) features has been considered for 

the analysis and its schematic is provided in Fig. 1. These 

features (F01-F05) require operations such as boring, drilling, 

finishing and contouring which are performed by different 

machines. Moreover, the operation precedence in each layout 

is changed to make it a dynamic layout problem. This makes 

the problem combinatorial and in literature, CFP’s are widely 

considered as challenging problem sets. Also, they belong to 

non-polynomial hard (NP-hard) set of problems and 

computational time of such problems increases exponentially 

[17, 18]. The traditional optimization approaches, such as, 

linear programming cannot be used to solve such problem and 

rather, algorithms are used. A literature based relevance can 

be found in ref. [19], where simulated annealing algorithm has 

been used for layout analysis in order to minimize the material 

handling costs. 

In most cases, fixed assembly line has been used for 

production with similar characteristics. Nonetheless, there is 

a product-oriented approach in literature as well where 

products with different characteristics are assembled. The line 

balancing approaches are adopted in such cases and 

associated tasks are performed on different machines. The 

classification of different tasks defined in Table 1 is provided 

in Fig. 2 where processing, turning, drilling, milling and 

finishing represents the set of five (5) processes. Adding to it, 

the relative importance of each task has also been provided by 

using the following nomenclature. 
 

  Table 1:    Layout, product feature precedence and machine allocation. 

Layout Variants Feature precedence Machine order 

L1: SPL CO1 F01- F02- F03- F04- F05 m1- m2- m3- m4 

 CO2 F01- F03- F04- F02- F05 m4- m3- m1- m2 

 CO3 F03- F05- F02- F04- F01 m1- m4- m2- m3 

L2: PPL CO1 F04- F05- F01- F02- F03 m3- m4- m5- m1- m2- m6 

 CO2 F05- F03- F01- F02- F04 m2- m3- m4- m6- m1- m5 

 CO3 F02- F01- F03- F04- F05 m6- m1- m2- m4- m3- m5 

L3: TPL CO1 F04- F02- F03- F01- F05 m1- m6- m3- m4- m7- m2- m5 

 CO2 F01- F05- F02- F04- F03 m3- m2- m7- m5- m6- m4- m1 

 CO3 F05- F02- F03- F04- F01 m7- m1- m4- m2- m3- m5- m6 
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Fig. 1: Schematic of the case study. 

A= Very important, 

E= Exigent, 

I=   Important, 

N= Neutral, and 

U= Un-important. 

This has been performed in order to take into account the 

closeness between tasks and machine allocation while 

changing the precedence. Similarly, if two tasks are 

consecutive then they will be assigned to machines according 

to their precedence relationship. The violation of this criterion 

can incur additional cost such as, waiting cost and an increase 

in stipulated queue time.  

 

Fig. 2: Relative importance and closeness of tasks. 

The cellular problems and assembly line approaches are of 

paramount importance as they provide analysis on the optimal 

ratio of throughput to cost. In majority of the studies, layout 

and machine allocation problems have been frequently 

discussed [19]. Three layouts have been considered (Fig. 3) 

and subsequently variability has been considered in the 

number of machines, precedence order and flow of goods 

between these layouts. The objectives of the study are;  

1. To compare different layouts by taking into account the 

costs related to layout, setup, handling and processing, 

2. To compare the layouts based on completion time and,  

3. To compare the layouts on the basis of throughput. This 

objective is inversely related to the objectives of cost and 

time. An increase in the productivity results in a decrease 

in cost and time.  

As discussed earlier, the stated problem is combinatorial 

and thus the use of NSGA-II [20] and multi-attribute decision 

making criteria called technique for order preference by 

similarity to ideal solution (TOPSIS) are proposed to solve the 

problem. The NSGA-II has been used to provide non-

dominated Pareto-front of candidate solutions, whereas, 

TOPSIS has been used for hierarchical ranking. 

 

Fig. 3: a) Serial assembly line, b) parallel assembly line and c) tubular 

assembly line layout. 

(a) 

(b) 
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Fig. 4:    Process flow of genetic algorithm. 

3. Methods 

3.1 Non-Sorting Genetic Algorithm (NSGA-II) 

The Non-Sorting Genetic Algorithm is a non-domination 

based algorithm and it is based on the biological process of 

gene’s evolution. In genetic algorithm, the chromosomes are 

used as proxies in the form of binary sequences to represent 

the candidate solution. Furthermore, a fitness function is 

employed to assess the potential of a chromosome against 

defined criteria (objective function). A list of chromosome is 

called population and periodic time based analysis 

of population is called generation. The process flow of 

NSGA-II is provided in Fig. 4 and it uses the genetic operators 

such as, reproduction, crossover and mutation. 

 Reproduction: This stage represents the selection of 

chromosomes according to fitness value. The result of 

this stage is used in the crossover and mutation stages. 

Also, individual population (parents) are selected in order 

to formulate the forthcoming generation of off-springs. 

 Crossover: It is the exchange of portions between 

chromosomes. The parents from stage 1 are combined to 

produce children, similar to biologically inspired 

phenomena and resulted children shows resembling 

characteristics to their parents. The crossover operates by 

considering 2 chromosomes from a population and it 

results into new chromosome which exhibit different 

characteristics. There are different crossover operators in 

literature such as, single-point and uniform crossover.   

 Mutation: It is the process of application of random 

modifications to a chromosome for producing improved 

offspring. 

NSGA-II has been applied to different problems such as, 

work balancing problems and supply chain integration 

problems [21]. One of the advantages in using it is that the 

problem does not need to be expressed mathematically. The 

only requirement is to have an ‘objective function’ or ‘fitness 

function’ that can be evaluated numerically [22]. The 

pseudocode of NSGA-II algorithm is provided in Fig. 5. 

NSGA-II Pseudocode 

Input: N’’, g, fk(X)> N’’ members evolved g generations to solve fk(X) 

Initialize Population ք’; 

Generate random population- size N’’; 

Evaluate Objective values; 

Assign Rank (level) based on Pareto- sort; 

Generate Child Population; 

  Binary Tournament Selection; 

  Recombination and Mutation;  

for i= 1 to g do  

   for each parent and child in population do  

     Assign Rank (level) based on Pareto- sort;  

     Generate sets of non-dominated solutions;  

     Determine Crowding distance;  

     Loop ; next solution starting from the first front until N’’ individuals; 

  end  

  Select points on the lower front with high crowding distance;  

  Create next generation; 

     Binary tournament selection; 

     Recombination and mutation; 

end  

Fig. 5:    Pseudocode of NSGA-II. 
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Fig. 6:    Parent, offspring and random number assignment. 

 

An example of the selected NSGA-II approach is 

demonstrated through Fig. 6 where a variant has been selected 

from each layout. In particular, we have selected first variant 

from the first layout, second variant from the second layout 

and last variant from the third layout. The row representing 

parent contains the number of machines in each layout such 

as, there are four (4), six (6) and seven (7) machines 

respectively, in the first, second and last variant. A real value 

between 0-1 is assigned to each of the parent member i.e. 

machine and correspondingly a random number (0/1) is 

associated to each member. The resulted off-springs after the 

crossover are provided in the last row. These results can be 

refined through multiple generations of mutation operator. As 

shown in Table 2, the considered population size is 40 and 

number of generations is 70. The selected operator is a binary 

number and probability values of crossover and mutation are 

0.7 and 0.3, respectively. 

Table 2:   NSGA-II design parameters. 

Design Parameter Assigned value 

Size of population 40 

Generations specification 70 

Selection operator Binary 

Probability of cross-over 0.7 

Probability of mutation 0.3 

3.2 TOPSIS 

The Technique for Order of Preference by Similarity to 

Ideal Situation (TOPSIS) is a frequently used ranking tool and 

it has been discussed in literature as a Multi-Criteria Decision 

Making (MCDM) approach. It was introduced for the first 

time by Hwang et al. [23] to solve problems requiring 

selection of optimal result from given Pareto fronts. Its 

application can be found in supply chain resilience and risk 

management [24], renewable energy analysis for electricity 

production [25] and artificial intelligence based product 

failure analysis [26]. 

The logic behind its application is to select an alternate on 

the basis of minimum distance from positive ideal solution 

and maximum distance from negative ideal solution. The 

positive solution is based on maximization of benefits 

(such as values and profit) while negative solution enhances 

the cost and minimizes the beneficial outcome. To 

summarize, the positive-ideal solution is composed of all best 

values attainable of criteria, and the negative-ideal solution 

consists of all the worst values attainable of criteria. A single 

value based integration of performance criteria is made to 

implement in a diverse optimization environment. Various 

performance ratings are assigned on the basis of weights 

allocation to alternatives [27].  

A matrix is used by TOPSIS for comparing pairs of 

elements and relative priorities are assigned to each pair, as 

shown in the matrix below.   

[

𝑙11 𝑙12 𝑙1𝑡
𝑙21 𝑙22 𝑙2𝑡
𝑙𝑧1 𝑙𝑧2 𝑙𝑧𝑡

] 

Where, 

ℓij; i = 1,….. z;  j = 1 ,….. t ; Fj; j= 1,……, t  represents the 

fuzzy numbers; 

        ℓij= (kij, lij, mij)                (1) 

        Fj= (kj1, lj2, mj3)              (2) 

        F= [F1  F2…… Ft]          (3) 

The normalized matrix N is represented by;    

            𝑁 = [𝑟𝑖𝑗]𝑧×𝑡                      (4) 

The decision matrix, on the basis of weighted normalized 

fuzzy criteria, is provided by; 

 

The process flow of TOPSIS is explained through Fig. 7 

which starts with identification of the problem such as, to 

select optimal solution from Pareto-fronts provided by 

NSGA-II. The second step is to determine alternates such as, 

layouts, variants and operation precedence. A criterion is then 

outlined on the basis of subjective assignment of different 

weights. Finally, the solution alternates are ranked as a result 

of implementing TOPSIS. 

https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93
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Fig. 7:    Process flow of TOPSIS. 

4. Results and Discussion  

As discussed in the previous sections, main objective of 

current study is to select a layout which provides optimal 

values of cost, time and productivity. Initially, NSGA-II was 

applied using binary coder to ascertain Pareto-optimal values 

for defined objectives. Table 3 contains the result of genetic 

algorithm for different feature precedence and machine 

orders. As can be observed, a global solution cannot be 

attained which provides optimal value against all three indices 

of cost, process time and number of products. For instance, 

minimal cost value is $5842 which is against the first variant 

of serial production layout, however, process time and 

number of product values are not optimal in this case. The 

process time value is minimum for the case of first variant of 

parallel layout as it has more machines and hence a high 

throughput results in less process time. It does not, however, 

provide an optimal value of productivity and rather the highest 

production quantity is 136 which is against first variant of 

tubular layout.  

It can be observed that if minimal cost values are chosen, 

they will represent local optimal, instead of holistic/global 

solution. A solution will provide global optimal value of one 

variable with sub-optimal values of other variables. It is 

clearly a case of conflict where a trade-off decision can be 

made only. In order to avoid such circumstances, we call 

all solutions as Pareto-fronts and thereby consider TOPSIS to 

provide the ranked solutions. The ranked solutions will assist 

decision maker to select the best compromise. The weighting 

criteria is defined in Table 4 for order preferences and three 

weights, Low (L), Medium (M) and High (H) have been 

identified with set scores and alternate scores represented as 

the vertices of a triangle. The alternate scores have been 

multiplied by 10 to magnify the initial set values. 

Table 3:    NSGA-II results against objective functions. 

Feature precedence Machine order {cost, total. time} Productivity  

F01- F02- F03- F04- F05 m1- m2- m3- m4 {5842, 376} 112 

F01- F03- F04- F02- F05 m4- m3- m1- m2 {6102, 348} 95 

F03- F05- F02- F04- F01 m1- m4- m2- m3 {5978, 416} 104 

F04- F05- F01- F02- F03 m3- m4- m5- m1- m2- m6 {7344, 292} 84 

F05- F03- F01- F02- F04 m2- m3- m4- m6- m1- m5 {6788, 345} 109 

F02- F01- F03- F04- F05 m6- m1- m2- m4- m3- m5 {5964, 366} 98 

F04- F02- F03- F01- F05 m1- m6- m3- m4- m7- m2- m5 {8671, 408} 136 

F01- F05- F02- F04- F03 m3- m2- m7- m5- m6- m4- m1 {7298, 388} 117 

F05- F02- F03- F04- F01 m7- m1- m4- m2- m3- m5- m6 {6346, 320} 104 

 

Table 4:    Weighting criteria. 

Weights Set value Alternate scores 

Low (L) (0,0,0.1) (0,0, 1) 

Medium (M) (0.5,0.6,0.8) (5,6,8) 

High (H) (0.6,0.8, 1) (6,8, 10) 

 

Table 5:    TOPSIS scores and ranking result. 

Layout Conf. Alt. values Fuzzy matrix  Normalized score Weighted score # Ranking 

L1 CO1 H (6,8,10) (0.6,0.8, 1) (0.36,0.47,1) 2 

 CO2 L (0,0,1) (0,0,0.1) (0.6,0.6,0.27) 5 

 CO3 M (5,6,8) (0.5,0.6,0.8) (0.25,0.36,0.47) 6 

L2 CO1 M (5,6,8) (0.5,0.6,0.8) (0.25,0.36,0.47) 7 

 CO2 H (6,8,10) (0.6,0.8, 1) (0.54,0.63,1) 1 

 CO3 M (5,6,8) (0.5,0.6,0.8) (0.25,0.36,0.47) 9 

L3 CO1 L (0,0,1) (0,0,0.1) (0.6,0.6,0.27) 3 

 CO2 H (6,8,10) (0.6,0.8, 1) (0.36,0.47,1) 4 

 CO3 L (0,0,1) (0,0,0.1) (0.6,0.6,0.27) 8 
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The computation results of TOPSIS ranking on the basis 

of subjective weights assignment are provided in Table 5. The 

last column provides ranking of variants according to 

weighted scores. For instance, the second variant of parallel 

layout with alternate value assigned as high (H) has been 

ranked one (1). 

The Fig. 8 provides three dimensional results of cost, time 

and number of products. There are multiple candidates for 

local optima in two-dimensional space whereas aim of the 

study was to identify the global optimal in a three-dimensional 

space (cost, time and productivity) starting from 

implementing genetic algorithm followed by TOPSIS ranking 

criteria. The objective function values have been multiplied 

with a big number M to make the graph leagible. 

5. Conclusions 

The production systems are constantly urged to be more 

sustainable in their approaches due to scarcity of resources. 

This study considered the problem of space utilization and 

layout; the analysis was performed using different 

combination of machines and order of operations. A multi-

objective assessment was conducted for optimizing cost, 

process time and productivity. The combinatorial problem 

was solved using non-sorting genetic algorithm (NSGA-II) 

and the non-dominated solutions were ranked using TOPSIS. 

 

Fig. 8:    Results for cost (x), time (y) and productivity (z). 

The study contains following limitations. The time 

between changing layouts was assumed zero which is not 

possible to sustain in real environments. Similarly, push 

production strategy was considered which means that 

production is irrespective of demand. Future study can model 

this problem considering fixed or dynamic demand 

environment. Similarly, in all layouts, different number of 

machines were used. Intuitively, different number of 

machines will require different number of operators which 

can potentially affect the objectives such as, cost and 

completion time. Although the number of operators was not 

accounted for in current study, it can be taken into 

consideration as operators directly impacts cost, productivity 

and process time in each layout. Lastly, future studies can 

compare the findings by using other algorithms such as, ant 

colony optimization and multi-objective particle swarm 

optimization. 
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