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A B S T R A C T 

Experimental designs widely use Latin squares for controlled testing to understand causal processes. 

Among many existing Latin squares for a given order, a design of experiment may need a specific Latin 
square that offers its treatments (symbols) scattered at the desired locations. There is a need to study 

systematic dispersion of symbols in Latin squares to assist effective research designs. This paper 

describes the attributes and applications of one of such designs known as Latin square of diamond 
dispersed pattern 

 

1. Introduction 

In the study of Design of Experiments (DoE), a controlled 

experiment may manipulate testing of a single variable at a 

time. The Latin square is a type of experimental design which 

is formed as a square array of n different elements with each 

symbol occurring exactly once in each row and each column. 

It is an unbalanced and fractional factorial experimental 

design. It helps to control two (or more) blocking factors.  

Fractional or partial factorial designs are good alternatives 

to the full-factorial designs that are time, energy and cost 

prohibitive [1]. They run faster for a chosen subset of factors 

level combinations, but this may leave many effects and 

interactions confounded [2]. The best-known systematic Latin 

squares (LS) for experimental designs are Knut Vik squares 

[3] that unfortunately do not exist for Latin squares of even 

orders [4].  

A Knut Vik square (KV square) is a type of design that 

forms a Latin square of order n with an additional attribute of 

having each symbol once in both left and right diagonals. 

These designs help to eliminate source of variation in four 

directions. 

Diamond Dispersion Pattern (DDP) [5] in Latin squares is 

committed to keep similar symbols distant from each other. 

The distance between any two similar symbols is maintained 

throughout the Latin square systematically by using a defined 

formula. This distance (Manhattan distance) is referred as the 

dispersion size of a Latin square of diamond-dispersed 

pattern. According to the calculation of DDP algorithm, for 

all the even dispersion sizes the minimum order required for 

a Latin square is an odd number and the resultant Latin square 

is a KV square. Conversely, DDP of all odd dispersion sizes 

require even number of symbols as a minimum order of the 

Latin square. This kind of LS design exploits the feature of 

KV square for some orders and it also offers systematic 

arrangement for a Latin square of other orders.  

Fisher [6] opposed the exclusive use of a systematic 

design like KV square and preferred the use of other randomly 

chosen designs. Giesbrecht and Gumpertz [7] mentioned two 

major observations regarding KV squares. First, KV square is 

not suggested in experimental designs that aim to balance out 

the spatial correlation. The main reason behind this argument 

is that the repetition of a symbol always carries same common 

neighbouring symbols around it. This kind of plan may fail to 

overcome variation factors that emerge by spatial interactions. 

Secondly, randomization is always preferred in experimental 

design but a KV square being a systematic design does not 

allow many choices to adjust symbols, rows or columns in a 

Latin square. Limited randomization restricts control of 

variation. 

Commonly, not all the experimental designs suffer 

confounding because of spatial correlation, or the spatial 

interaction may be quite ignorable. Randomization is 

normally applied in selection of a design among all available 

designs. The randomization may be applied in assignment of 

levels of the row/column factor to the rows/columns or in 

assignment of treatments to the treatment letters. In some 

environments, randomizations may not help to change the 

results of an experiment [8]. 

This paper presents physical layout and attributes 

applicability of DDP. It is shown that DDP is a special design 

of experiment that is useful in situations where same 

treatments cannot follow each other very soon. In such 

environment time is the major consideration for implied 

blocking factors. By using DDP a qualified yield is expected 

from the experiments in which repetition of treatments need a 

natural and periodic dispersion. Moreover, DDP offers a 
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proper randomization space for the selection of experimental 

design among sufficiently available number of designs. 

2. Geometry of the Pattern 

Generating customized Latin squares by using different 

methods is very common [9].  Our customization of Latin 

squares is named DDP (Diamond Dispersed Pattern). The 

name of this pattern refers to its physical layout in a Latin 

square. 

A grid of 7×7 cells having a central cell represented by O 

is shown in Fig. 1(a). There are only four cells (shaded) 

around O that are at a Manhattan distance (MD) of one cell 

from it. This forms a small diamond like shape with radius 1 

(MD from the center). The area of this diamond covers total 

five cells (four boundary cells and one central cell). There are 

added eight new cells (shaded) at a Manhattan distance of two 

from the center (Fig. 1(b)). It forms a bigger diamond whose 

area include new shaded cells and all the cells covered by its 

internal diamond of radius one. Total number of cells covered 

by this diamond of radius two are equal to thirteen 

(4×2 + 4×1 + 1). 

Similarly, there will be twelve (4×3) new cells that are 

exactly at MD of three from the center (Fig. 1(c)) and the new 

diamond of radius three will covers all newly added cells 

(boundary cells) and cells of its internal diamonds. There are 

total twenty-five (4×3 + 4×2 + 4×1 +1) cells covered by this 

diamond of radius three. 

 

Fig. 1: (a, b and c) Geometry of the diamond patterns. 

A recurrence relation ar = 4r + ar-1 is observed in 

calculation of total number of cells ar covered by a diamond 

of radius r. In this relation, the term ar-1 is the number of cells 

covered by a diamond of radius r-1 and a0 = 1. The solution of 

this linear, non-homogeneous recurrence relation with 

constant coefficients is given as: 

     𝑎𝑟 = 2𝑟2 + 2𝑟 + 1  (1) 

This equation provides the total number of cells in a 

diamond of radius r. According to the DDP, a symbol that 

follows a dispersion size r, leaves ar number of cells around it 

before repeating itself. 

DDP is committed to disperse symbols in a Latin square. 

We can confirm this pattern by drawing a diamond around any 

symbol. The symbol in the center of the diamond does not 

appear on other locations of the same diamond. All the same 

symbols are dispersed at a Manhattan distance equivalent to 

the dispersion size of the Latin square. This distance is also 

equal to the radius of the diamond. 

An increasing dispersion size requires more symbols to 

hold cells in between same symbols. This results in the 

formation of a higher order Latin square. The following 

formula calculates the required number of symbols n (order of 

Latin square) for a dispersion r [5]. 

        n=
𝑟2+𝑟

2
+

𝑟

2
+ 1     (2) 

The above equation uses integral division. To avoid 

integral division, an equivalent formula is given as: 

       𝑛 =
1

4
(2𝑟2 + 4𝑟 + (−1)𝑟 + 3)     (3) 

Table 1 shows the values for number of cells and number 

of symbols required for each dispersion size r.  

The term 2r2 + 4r + (-1)r + 3 has significant meanings 

noticed in third column. All these numbers are multiples of 

four. The difference between two terms follows a pattern 

shown in column 5 and 6.  

Table 1:    Number of cells and required number of symbols in diamond with 

radius r.  
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As discussed in coming section, such span of the 

propagation is quite relevant with the physical structure of a 

diamond that is symmetrical in all its four parts (Fig. 2). 

 
Fig. 2:    Four symmetrical parts of a diamond. 

A dispersion size of two is possible only for a Latin square 

that has at least five symbols (Table 1). Fig. 3(a) shows a 

complete Latin square formed by only five available symbols. 

Similarly, Figs. 3(b) and 3(c) show all the required symbols 

spread over different cells for dispersion sizes three and four, 

respectively. 

 

Fig. 3: (a, b and c) Latin squares of dispersion size 2, 3 and 4. 

3. Results 

Diamond dispersion pattern is a well-defined pattern that 

exhibits many interesting attributes. Followings are some of 

our major findings about diamond dispersed pattern in Latin 

squares. 

3.1 Patterns of Repetition 

Fig. 4(a) is a diamond with dispersion size three. A few 

highlighted cells follow a certain pattern. Each of the symbols 

in these highlighted cells repeats four times and among the 

remaining symbols “f and h” repeat three times. The symbol 

g repeats two times only. A symbol can repeat maximum four 

times. As all the symbols compete for available 

cells/locations, some symbols do not get the chance of 

repeating themselves four times. A unique pattern among 

symbols that are repeated four times (highlighted) for a 

dispersion size of four can be noticed in Fig. 4(b). 

In Table 1, the value of n for odd dispersions has a 

sequence of numbers (2, 8, 18, …). The general term of this 

progression is 2p2. Similarly, the order of LS for all even 

dispersion follows a sequence (5, 13, 25, …). The general 

term of this sequence is given by: 

        2𝑝2 + 2𝑝 + 1        (4) 

Instead of using Eq. (2) or Eq. (3), we can use these 

individual and simple equations for odd and even dispersions. 

 
Fig. 4:    (a, b) Repetition patterns. 

3.2 Almost a Quarter of the Diamond Need Unique 

Symbols 

A diamond of radius four is shown in Fig. 5. The 

highlighted cells (quarter of the diamond) form a smaller 

diamond of radius two consisting of total thirteen cells. As a 

symbol cannot repeat more than four times, a quarter of total 

cells must hold unique symbols. We need thirteen unique 

symbols to fill out this diamond. 

(a) 

(b) 

(c) 

(a) 

(b) 
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Fig. 5:    Diamond of Radius r and its quadrant. 

The relation of symbols and cells for all even dispersions 

is presented in Table 2. This relation is also evident from 

Eqs. (1) and (4) as discussed above. 

Table 2:    Relation between diamonds of radius r and its quadrant. 

M.D for diamond of radius r 

(Even) 
2 4 6 8 10 

Symbols required 5 13 25 41 61 

Cells in diamond of radius r/2 

cells = 2(r/2)2 + 2(r/2) + 1 
5 13 25 41 61 

3.3 Cells to Symbols Ratio 

To disperse same symbols over a long distance requires 

adding more cells and symbols. By increasing number of 

symbols and cells in a Latin square, the size of resulting 

diamond also increases. Cells to symbols ratio is helpful to 

optimize the size of diamond. 

Cells-to-symbols ratio for different dispersion sizes is 

given in Table 3. As central symbol always takes one central 

block and never repeats in other parts of the diamond, we 

exclude this in the calculations. The ratio of (cells-1) to 

(symbols-1) represents number of cells covered by a single 

symbol. As discussed above, this value is around 4 normally. 

Table 3:    Cells to symbols ratio. 

Dispersion Size 2 3 4 5 6 - 

- 

- 
-  

50 

Cells-1 12 24 40 60 84 - 

- 

- 
-  

5100 

Symbols-1 4 7 12 17 24 - 

- 

- 
-  

1300 

Cells/Symbols 3.0 3.4 3.3 3.5 3.5 - 

- 

- 
-  

3.9 

We may notice that the value starts from 3 and for higher 

dispersion sizes, this value approximately reaches up-to 4. 

The presence of crevices (see next attribute) inside a diamond 

make this value less than 4. 

3.4 Repeating Pattern in DDP 

A diamond of radius eleven with the center O1 is shown 

in Fig. 6. All four quarters are marked with center O2. They 

have radius five and they are further divided into four of their 

quadrants with centers marked as O3. Similar patterns are 

recurring at smaller scales progressively. 

 

Fig. 6:    Repeating patterns in DDP. 

There are some light cells (unshaded) that are not a part of 

any quadrant; we call these cells crevices of the diamond. 

These crevices cause extra symbols to be introduced for a 

given dispersion size and consequently increase the order of a 

resultant Latin square. The presence of crevices reduces cells 

to symbols ratio. 

3.5 KV Squares of DDP 

We devised an equation to generate Latin squares of 

dispersed pattern. This pattern in Latin square is a more 

generalized form of KV Squares. The following equation of 

DDP produces a Latin square of order n with a dispersion size 

r. Here S(i, j) represents the resultant symbol S to be assigned 

to the cell at row i and column j. 

         𝑠(𝑖, 𝑗) = [(𝑟 + 1 − 𝑟%2)𝑖 + 𝑗]%𝑛     (5) 

The numbers (r+1) and n are mutually prime and 0 < (r+1) 

< n (Table 4). These two conditions are the main requirements 

for generating a KV square. 

Table 4:    Co-prime relation of r + 1 and n. 

r + 1 3 5 7 9 11 

n 5 13 25 41 61 

3.6 Randomization Space 

In DDP, there may exist multiple Latin squares of same 

order and same dispersion size. This characteristic of DDP is 

very useful when an experimental design needs variety of 

implementation styles. By using Eq. (5), we draw different 

clones of a LS with a dispersion size 2 (Fig. 7). These clones 

are just different permutations of a Latin square. As the 

number of Latin squares increases with increasing order 

exponentially, the randomization space for DDP clones also 

outgrow with higher dispersion sizes. 



S.Z. Mahfooz and Y. Khan / The Nucleus 56, No. 4 (2019) 131-136 

 135 

 

Fig. 7:    Clones of LS with DDP. 

3.7 DDP as a Solution of Arrangement Problems 

Other than its main use as design of experiments, DDP is 

useful in some routine life practices as solution of 

arrangement problems. Given below are a few examples of 

arrangement problems that may be solved using DDP. 

3.7.1 Scattering image/video data to help concealment by 

decoder 

Spatial and temporal redundancy is exploited to compress 

a video sequence for communication. On receiving side, the 

decoder may not receive all the transmitted packets of video 

data; in such situation, concealment is required for recovery. 

It is very much preferred to receive data adjacent to a missing 

part of image frame that can overcome concealment artifacts. 

DDP is useful in scattering the spatial information available 

in an image frame during its compression stage. Even if 

consecutive packets of data are lost due to a bad 

communication channel, it is still possible to receive 

neighbouring blocks of a missing block in an image frame. 

These available neighbouring blocks may help to conceal 

better and to improve subjective and objective quality of a 

decoded video frame. 

An example of an erroneous video frame that is concealed 

at decoder side is shown in Fig. 8. As blocks of video frame 

were dispersed during compression stage, all the missing 

blocks are not concentrated at one location that make 

concealment job easy and more effective [10]. 

 

Fig. 8:    Dispersed pattern implemented in H.264/AVC. 

3.7.2 Segregation of incompatible chemicals 

In a storage place of different chemicals, there is an issue 

for segregating incompatible chemicals. Incompatible 

chemicals are dangerous when mixed or put together. They 

must set apart from each other. There is available a complete 

classification of chemicals with respect to their 

incompatibility. Unavailability of enough space may limit to 

put incompatible chemicals in the same cabinet. DDP is useful 

in allocation of incompatible chemicals to different boxes and 

shelves of a cabinet. 

Suppose there are seven boxes in each shelf of a cabinet 

with total six shelves. If we have a set of incompatible 

chemicals (C1, C2, …. C9) to be segregated in this cabinet, 

an arrangement can use DDP of five symbols in a 7×6 gird of 

cells with a dispersion size of 2 (Fig. 9). Each cell represents 

a box and all incompatible chemicals from a set may use 

locations of a symbol in the grid. For example, symbol 0 is 

replaced (highlighted) by all incompatible chemicals of the 

given set. Similarly, the locations of symbol 1 can provide 

space for incompatible chemicals from another set. 

 

Fig. 9:    Segregation of incompatible chemicals. 

3.7.3 Separation of students to reduce examination 

malpractices 

To reduce the incidents of cheating in examination, 

several methods are adopted [11, 12]. Some of them try to 

overcome the issue of cheating in examination through 

collusion by examinees who are seated at adjacent seats. 

Separation of students becomes mandatory when many 

students are tested at one time. In normal practices, students 

attempting different exams are mixed in a big hall. 

DDP is useful in curbing cheating by confirming 

separation of students attempting the same examination. In 

such environment, DDP is plotted for a gird of available 

number of seats (column) and available lines (rows), where 

number of symbols are equivalent to types of examinations 

held in the hall. The general Eq. (5) is used to arrange five 

different examinations (E1, E2, E3, E4 and E5) conducted in 

a hall where twelve seats are available in each of total eight 

lines (Fig. 10). In such arrangements, no two students 

conducting same examination become a direct neighbor to 

each other. 

 

Fig. 10:    Examinees sitting arrangements using DDP. 
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4. Conclusions 

The proposed pattern in Latin squares provides a complete 

arrangement system for treatments in experimental designs. 

The current study focuses to analyze the system of DDP. It 

includes discussion on the physical layout of DDP and its 

attributes. DDP is recommended for the experimental designs 

where treatments are supposed to be dispersed or not taking 

place quite soon. Except experimental designs for statistical 

analysis, DDP is suggested for use in arrangement problems 

of routine life or other scientific disciplines.  
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