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A B S T R A C T 

In engineering, computer sciences and many other applied sciences, finding shortest path in a network 

is one of the famous problems. The aim of this manuscript is to develop a novel algorithm for finding 

shortest path in a network where nodes and edges have some uncertainty. Firstly, the concept of single-
valued neutrosophic hesitant fuzzy graph (SVNHFG) has been introduced with some related graph 

theoretical results such that complement, subgraph, degree and path etc. Some examples are provided 

to understand the defined concepts. Then, the new algorithm for solving shortest path problems (SPPs) 
has been introduced followed by a flowchart for a stepwise description. A numerical example is provided 

in the environment of SVNHFGs to demonstrate the proposed algorithm. The advantages of proposed 

method over the existing techniques are also discussed. 

 

1. Introduction 

The computation of shortest path is a basic problem in 

networks especially in computer, communication and some 

other networks in engineering sciences. In such problems, the 

target is to determine the shortest path between first and final 

vertex. These problems are discussed in computer sciences, 

graph theory and Applied Mathematics [1-3]. 

The SPP has also been discussed in fuzzy environment 

since the concept of fuzzy set (FS) has been introduced. In 

real-life problems, sometimes we face uncertainty in 

computation due to several unnoticeable reasons and FS has 

proved to be the best tool so far in handling such problems. 

SPP has been studied not only using fuzzy graphs (FGs) but 

also using intuitionistic fuzzy graphs (IFGs), neutrosophic 

graphs (NGs) especially single valued neutrosophic graphs 

(SVNGs) and various other generalized structures. For some 

significant work on shortest path in fuzzy environments, one 

may refer to previously reported literature [4-15]. 

In 1965, the concept of  FS was intimated by Zadeh [15], 

which proved to be a remarkable tool for handling 

uncertainties that exist in real life problems. This concept was 

further enhanced by Atanassov [16] and the concept of 

intuitionistic fuzzy sets (IFSs) have been proposed. The 

concept of IFS has its own limitations which further enhanced 

the concept of neutrosophic set (NS) by Mukherjee and Sarkar 

[17], which leads to the concept of single valued neutrosophic 

set (SVNS) by Haibin et al. [18]. There are some other 

directions too where IFSs have been generalized such as the 

concept of picture fuzzy set (PFS) introduced by Cuong [19], 

spherical and T-spherical fuzzy sets by Mahmood et al. [20] 

and Ullah et al. [21]. The concept of hesitant fuzzy set (HFS) 

developed by Torra [22] has also a unique way of handling 

uncertainties in real life phenomena. Combining different 

fuzzy algebraic structures to get a new structure is also 

common in FS theory and several new directions have been 

reported previously [23-28]. 

The theory of FGs was initiated by Kauffman [29] and 

further deeply studied by Rosenfeld [30]. FGs have been 

extensively studied and several new dimensions have been 

introduced. The idea of IFGs was developed by Parvathi and 

Karunambigai [31] and further investigated by Parvathi et al. 

[32-34] and Pasi et al. [35]. Similarly IFG was further 

enhanced to IFG of second type (IFGST) by Dhavudh and 

Srinivasan [36]. To make the domain of IFG more viable, the 

concept of IFGs of nth type (IFGNT) and complex 

intuitionistic fuzzy graphs (CIFG) are recently proposed by 

Davvaz et al. [37] and Yaqoob et al. [38]. Some study related 

to NGs and its generalizations is investigated recently 

[39-44]. The study of hesitant fuzzy graphs (HFGs) is 

developed by Zhang and Li [45] where its several operations 

are defined and their applications in decision making are 

studied. The concept of cubic graphs is investigated by 

Rashid et al. [46]. 

The idea of single valued neutrosophic hesitant fuzzy set 

(SVNHFS) has been proposed by Ye [47], which is a 

generalization of both SVNSs and HFSs. Motivated by the 

work on this recent development, in this article, we aimed to 

develop the concept of SVNHFGs and studied the famous 

SPP in a network which is based on SVNHF information. 

In this article, we discuss the significance of SPP in 

various fields especially in fuzzy algebraic structures in first 

section. The second section contain some basic definitions. 

Section three is based on some concepts of SVNHFGs and its 

related terms. The fourth section is based on a novel algorithm 

for SPP and its flowchart. In the fifth section, we describe a 

numerical example based on the proposed algorithm and 

demonstrate its every step with details. Finally, the article is 

summarized with discussion of some future directions. 
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2. Preliminaries 

This section describes some important terms which are 

helpful to study the paper. Here IFSs, HFSs and SVNSs are 

discussed and their graphs are demonstrated. Throughout our 

article, the terms Ŝ1(Ŝ2), Ĩ1(Ĩ2) and Ḑ1(Ḑ2) will denote the 

membership, indeterminacy and non-membership functions 

of nodes (edges) respectively.  

2.1 Definition [18] 

An IFS is a duplet Ǻ = (Ŝ, Ḑ) in set Ẋ where Ŝ, Ḑ are 

functions from the set Ẋ to an element from unit interval [0,1] 

with a restriction that 0 ≤ Ŝ + Ḑ ≤ 1. 

2.2 Definition [34] 

An IFG is a duplet Ģ = (Ṽ, Ë) where Ṽ is a set of nodes s.t. 

and Ŝ1, Ḑ
1
 are two mappings on [0, 1] interval for ṽ𝑛 ∈ Ṽ 

respectively with a restriction 0 ≤ Ŝ1 +  Ḑ
1

≤ 1 and Ë is the 

set of edges where eį ∈ Ṽ × Ṽ is based on two mappings Ŝ2 

and Ḑ
2
 defined as: Ŝ2(eį) ≤ min [Ŝ1(ṽį), Ŝ1(ṽĵ)] and 

Ḑ
2

(eį) ≤ max [Ḑ
1

(ṽį), Ḑ
1

(ṽĵ)] with a restriction that 0 ≤

Ŝ2 + Ḑ
2

≤ 1. 

2.2.1 Example 

The graph in Fig. 1 is an example of IFG. 

 
Fig. 1:    IFG. 

2.4 Definition [25] 

A HFS is of the form 𝑀 = [(𝑥, ℎ(𝑥))|∀ x ∈  X] where 

ℎ(𝑥) a set of different values in is [0, 1] denoted the 

membership values. Here ℎ(𝑥) is a hesitant fuzzy number 

(HFN). 

2.5 Definition [45] 

A HFG is a duplet Ģ = (Ṽ, Ë) where Ṽ is a set of nodes s.t. 

and Ŝ1 is a map on [0, 1] having the form of HFN for ṽ𝑛 ∈ Ṽ. 

Further, Ë is the set of edges where eį ∈ Ṽ × Ṽ is based on a 

HFN Ŝ2 s.t. Ŝ2(eį) ≤ min [Ŝ1(ṽį), Ŝ1(ṽĵ)]. 

2.5.1 Example 

Fig. 2 is an example of HFG. 

 
Fig. 2:    HFG. 

2.6 Definition [20] 

A SVNS consists of some triplet of the form Ǻ = (Ŝ, Ĩ, Ḑ) 

in set Ẋ where Ŝ, Ĩ and Ḑ are functions from the set Ẋ to an 

element from unit interval [0,1] with a restriction that 0 ≤ Ŝ +

Ĩ + Ḑ ≤ 3. Further Ǻ = (Ŝ, Ĩ, Ḑ) is called a single valued 

neutrosophic number (SVNN). 

2.7 Definition [20] 

Consider Ǻ1 = (Ŝ1, Ĩ1, Ḑ1) and Ǻ2 = (Ŝ2, Ĩ2, Ḑ2) be two 

SVNNs. Then 

1.   Ǻ1 ⊕ Ǻ2 = (Ŝ1 + Ŝ2 − Ŝ1Ŝ2, Ĩ1Ĩ2, Ḑ1Ḑ2) 

2.   Ǻ1 ⊗ Ǻ2 = (Ŝ1Ŝ2, Ĩ1 + Ĩ2 − Ĩ1Ĩ2, Ḑ1 + Ḑ2 − Ḑ1Ḑ2) 

3.   𝜆Ǻ = (1 − (1 − Ŝ1)𝜆), Ĩ1
𝜆

, Ḑ1
𝜆) 

4.    Ǻ1

𝜆
= (Ŝ1

𝜆
, (1 − Ĩ1)𝜆 , (1 − Ḑ1)𝜆) where 𝜆 > 0 

2.8 Definition [20] 

The score, accuracy and certainty values of a SVNN Ǻ1 =

(Ŝ1, Ĩ1, Ḑ
1

) is of the form: 

1.   𝑠(Ǻ1) =  
2+Ŝ1−Ĩ1−Ḑ1

3
 

2.   𝑎(Ǻ1) = Ŝ1 − Ḑ1 

3.   𝑐(Ǻ1) = Ŝ1 

2.9 Definition [20] 

Consider Ǻ1 = (Ŝ1, Ĩ1, Ḑ1) and Ǻ2 = (Ŝ2, Ĩ2, Ḑ2) be the 

two SVNNs. Then: 

1.   Ǻ1 < Ǻ2  if 𝑠(Ǻ1) < 𝑠(Ǻ2) 

2.   Ǻ1 > Ǻ2  if 𝑠(Ǻ1) > 𝑠(Ǻ2) 

3.   Ǻ1 = Ǻ2  if 𝑠(Ǻ1) = 𝑠(Ǻ2) 

2.10 Definition [44] 

An SVNG is a duplet Ģ = (Ṽ, Ë) where Ṽ is a set of nodes 

s.t. and Ŝ1, Ĩ1 and Ḑ
1
 are three mappings on [0, 1] interval for 

ṽ𝑛 ∈ Ṽ respectively with a restriction 0 ≤ Ŝ1 + Ĩ1 +  Ḑ
1

≤ 3 

and Ë is the set of edges where eį ∈ Ṽ × Ṽ is based on three 

mappings Ŝ2, Ĩ2 and Ḑ
2
 defined as: 

Ŝ2(eį) ≤ min [Ŝ1(ṽį), Ŝ1(ṽĵ)], 

Ĩ2(eį) ≤ max [Ĩ1(ṽį), Ĩ1(ṽĵ)], Ḑ
2

(eį) ≤

 max [Ḑ
1

(ṽį), Ḑ
1

(ṽĵ)] with  a  restriction  that 0 ≤ Ŝ2 + Ĩ2 +

Ḑ
2

≤ 3. 

2.11 Definition [47] 

An SVNHFS consists of some triplet of the form Ñ =
(Ŝ, Ĩ, Ḑ) in set Ẋ where Ŝ, Ĩ and Ḑ are sets of values from the 

set Ẋ to an element from unit interval [0,1] with the 

restrictions that 0 ≤ α, β, γ ≤ 1 and 0 ≤ α+, β+, γ+ ≤ 3 

where 𝛼 ∈ Ŝ, 𝛽 ∈ Ĩ, 𝛾 ∈ Ḑ, α+ ∈ Ŝ+ = max ∪𝛼∈Ŝ, β+ ∈ Ĩ
+

=

max ∪𝛽∈Ĩ, and γ+ ∈ Ḑ+ = max ∪𝛾∈Ḑ. Further Ñ = (Ŝ, Ĩ, Ḑ) is 
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called a single valued neutrosophic hesitant fuzzy number 

(SVNHFN). 

2.11.1 Example 

Fig. 3 is an example of SVNG. 

 

Fig. 3:    SVNG. 

3. Single Valued Neutrosophic Hesitant Fuzzy Graphs 

In this section we will discuss the new concept of 

SVNHFG as a generalization of SVNG and HFG along with 

some important results and their properties. 

3.1 Definition 

A SVNHFG is a pair Ģ = (Ṽ, Ë) where Ṽ is a set of nodes 

s.t. and Ŝ1, Ĩ1 and Ḑ
1
 are three HFNs that describe each ṽ𝑛 ∈

Ṽ respectively with a restriction that 0 ≤ max Ŝ1 + max Ĩ1 +
max Ḑ1 ≤ 3 and Ë is the set of edges where eį ∈ Ṽ × Ṽ is 

based on three HFNs Ŝ2, Ĩ2 and Ḑ
2
 defined as: 

Ŝ2(eį) ≤  min [Ŝ1(ṽį), Ŝ1(ṽĵ)], 

Ĩ2(eį) ≤ max [Ĩ1(ṽį), Ĩ1(ṽĵ)], 

Ḑ2(eį) ≤  max [Ḑ1(ṽį), Ḑ1(ṽĵ)] with a restriction that 0 ≤

max Ŝ2 + max Ĩ2  + max Ḑ2 ≤ 3. 

3.1.1 Example 

Fig. 4 is an example of SVNHFG. 

 

Fig. 4:    SVNHFG. 

3.2 Definition 

A pair S = (Ṿ’, Ë’) is a SVNHF subgraph of a SVNHFG 

Ģ = (Ṽ, Ë) if 

1.   Ŝ′
1i ≤ Ŝ1i, Ĩ

′
1i ≤ Ĩ1i, Ḑ

′
1i

≤ Ḑ1i 

2.   Ŝ′
2ij ≤ Ŝ2ij, Ĩ

′
2ij ≤ Ĩ2ij, Ḑ

′
2ij

≤ Ḑ2ij 

∀ į, ĵ = 1,2,3, … n. 

3.3 Definition 

A SVNHFG is said to be a complete SVNHFG if 

Ŝ2ij = min (Ŝ1i, Ŝ1j) 

Ĩ2ij  =  max (Ĩ1i, Ĩ1j) 

Ḑ2ij = max(Ḑ1i, Ḑ1j) ∀ eį ∈  Ë. 

3.3.1 Example 

Fig. 5 is an example of complete SVNHF. 

 
Fig. 5:    Complete SVNHFG. 

3.4 Definition 

The complement of SVNHFG Ģ = (Ṽ, Ë) is a SVNHFG 

Ģ̅ = (Ṽ̅,  Ë̅) where 

1.   Ṽ̅  = Ṽ i.e. Ŝ1
̅ (ṽį) = Ŝ1(ṽį), Ĩ1

̅(ṽį) = Ĩ1(ṽį) and  

      Ḑ1
̅̅ ̅(ṽį) = Ḑ1(ṽį) 

2.   Ŝ2
̅ (eį) = min[Ŝ1(ṽį), Ŝ1(ṽĵ)] − Ŝ2(eį) 

Ĩ2
̅(eį) = max [Ĩ1(ṽį), Ĩ1(ṽĵ)] − Ĩ2(eį) 

Ḑ2
̅̅̅̅ (eį) = max [Ḑ1(ṽį), Ḑ1(ṽĵ)] − Ḑ2(eį) ∀ ṽį , ṽĵ ∈ Ṽ an  

eį ∈ Ë. 

3.4.1 Proposition 

The complement of every SVNHFG is a SVNHFG. 

3.4.2 Example 

Fig. 6 shows SVNHFG, while Fig. 7 represents its 

complement. 

 
Fig. 6:    SVNHFG. 
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Fig. 7:    Complement of SVNHFG. 

3.5 Definition 

The degree of vertex of a SVNHFG is defined by đ(ṽ) =
(đŜ(ṽ), đĨ(ṽ), đḐ(ṽ)) where, 

đŜ(ṽ) = ⅀ṽ≠𝑤Ŝ2(ṽ, 𝑤) 

đĨ(ṽ) = ⅀ṽ≠𝑤Ĩ2(ṽ, 𝑤) 

đḐ(ṽ) = ⅀ṽ≠𝑤Ḑ2(ṽ, 𝑤) 

where đŜ, đĨ and đḐ denote the degree Ŝ, Ĩ and Ḑ, respectively. 

3.6 Definition 

The maximum degree of SVNHFG is defined by ∇(Ģ) =
(∇Ŝ(Ģ), ∇Ĩ(Ģ), ∇Ḑ(Ģ))  where,∇Ŝ(Ģ) =∨ {đŜ(ṽ); ṽ ∈ Ṽ} 

∇Ĩ(Ģ) =∨ {đĨ(ṽ); ṽ ∈ Ṽ} and 

∇Ḑ(G) =∨ {dḐ(ṽ); ṽ ∈ Ṽ} where ∇Ŝ, ∇Ĩand ∇Ḑ denotes the 

degree of maximum Ŝ, Ĩ and Ḑ, respectively. 

The minimum degree of SVNHFG is defined by: 

𝜕(Ģ) = (∂Ŝ(Ģ), ∂Ĩ(Ģ), ∂Ḑ(Ģ)) where 

∂Ŝ(Ģ) =∧ {đŜ(ṽ); ṽ ∈ Ṽ} 

∂Ĩ(Ģ) =∧ {đĨ(ṽ); ṽ ∈ Ṽ} 

∂Ḑ(Ģ) =∧ {đ𝐹𝑇(ṽ); ṽ ∈ Ṽ} where ∂Ŝ, ∂Ĩ and ∂Ḑ denote the 

degree of minimum Ŝ, Ĩ and Ḑ, respectively. 

3.6.1 Example 

Fig. 8 is a SVNHFG where degree of vertices is computed 

using definition (3.9). 

 

Fig. 8:    Degree of SVNHFG. 

đŜ(ṽ1) = 0.2, đĨ(ṽ1) = 0.7, đḐ(ṽ1) = 1.3 

d(ṽ1) = ({0.2}, {0.7}, {1.3}) 

d(ṽ2) = ({0.2}, {0.7}, {1.6}) 

d(ṽ3) = ({0.2}, {0.8}, {1.3}) 

𝜕(Ģ) = ({0.2}, {0.7}, {1.3}) 

∇(Ģ) = ({0.2}, {0.8}, {1.6}) 

3.6.2 Proposition 

In a SVNHFG Ģ =  (Ṽ, Ë), the ⅀đ(ṽį) =
[2⅀ṽ≠𝑤đ(ṽ, 𝑤)]. 

Proof: 

Let Ģ =  (Ṽ, Ë) be a SVNHFG. 

Then 

⅀đ(ṽį) = ⅀[đŜ(ṽį), đĨ(ṽį), đḐ(ṽį)] 

 = [⅀đŜ(ṽį), ⅀đĨ(ṽį), ⅀đḐ(ṽį)] where į = 1 ,2 ,3 … 𝑛. 

=[⅀į≠ĵŜ2(eį), ⅀į≠ĵĨ2(eį), ⅀į≠ĵḐ2(eį)] 

=[⅀į≠ĵŜ2(eį), ⅀į≠ĵĨ2(eį), ⅀į≠ĵḐ2(eį)] 

= [(Ŝ2(ṽ1, ṽ2), Ĩ2(ṽ1, ṽ2), Ḑ(ṽ1, ṽ2)) + ( Ŝ2(ṽ1, ṽ3),
Ĩ2(ṽ1, ṽ3), Ḑ2(ṽ1, ṽ3)) + ⋯

+ (Ŝ2(ṽ1, ṽn), Ĩ2(ṽ1, ṽn), Ḑ2(ṽ1, ṽn))

+ (Ŝ2(ṽ2, ṽ1), Ĩ2(ṽ2, ṽ1), Ḑ2(ṽ2, ṽ1))

+ (Ŝ2(ṽ2, ṽ3), Ĩ2(ṽ2, ṽ3), Ḑ(ṽ2, ṽ3)) + ⋯

+ (Ŝ2(ṽ2, ṽn), Ĩ2(ṽ2, ṽn), Ḑ2(ṽ2, ṽn)

+ ⋯ (Ŝ2(ṽn, ṽ1), Ĩ2(ṽn, ṽ1), Ḑ2(ṽn, ṽ1))

+ ⋯ (Ŝ2(ṽn, ṽn−1), Ĩ2(ṽn, ṽn−1), Ḑ2(ṽn, ṽn−1))] 

= [2⅀į≠𝑗Ŝ2(eį), 2⅀į≠𝑗Ĩ2(eį), 2⅀į≠𝑗Ḑ2(eį)] 

Hence proved. 

3.6.3 Proposition 

The maximum degree of any vertex in a SVNHFG with 

n +  1 vertex is n. 

Proof: 

Consider a SVNHFG. As max  ( Ŝ2(ṽk, ṽl)) = 1 and 

maximum number of edges are ‘n’ of ‘n + 1’ vertices. Then 

dŜ(ṽk) = n (In SVNHFG). 

Similarly, 

dĨ(ṽn) = n 

 dḐ(ṽn) = n, 

Proved. 
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3.7 Definition 

In a SVNHFG Ģ = (Ṽ, Ë) the path P is sequence of distinct 

vertices ṽ1, ṽ2, … ṽ𝑛 such that either 

Ŝ2(ṽį−1, ṽį) > 0 

or 

Ĩ2(ṽį−1, ṽį) > 0 

or 

Ḑ2(ṽį−1, ṽį) > 0 

for 0 ≤ į ≤ 1. 

3.8 Definition 

In a SVNHFG G = (Ṽ, Ë) the path P is sequence of distinct 

vertices ṽ1, ṽ2, … ṽ𝑛, where n ≥ 1 is called the length of the 

path. A single vertex ṽį is also a path but in this case the length 

of the path is ({0}, {0}, {0}). 

3.9 Definition 

A SVNHFG Ģ = (Ṽ, Ë) is connected if every two vertices 

have a SVNHF path between them otherwise disconnected. 

3.10 Definition 

In a SVNHFG G = (Ṽ, Ë), the consecutive pairs (ṽį−1, ṽį) 

are called edges of path. 

3.11 Definition 

In a SVNHFG Ģ = (Ṽ, Ë), the path P is called a cycle if 

ṽ0 = ṽn where 𝑛 ≥ 3. 

3.12 Definition 

In a SVNHFG G = (Ṽ, Ë) if Ŝ2 = Ĩ2 = Ḑ2 = 0 then there 

does not exist any edge. 

4. Algorithm for Finding Shortest Path in SVNHFG 

To compute the shortest path from each node to its 

predecessor, an algorithm is proposed in this section. In real 

life problem this algorithm is useful to find the shortest path 

in a network. 

Step 1: 

Identify the first and final nodes of destination as ṽ1 

and ṽ𝑛. 

Step 2: 

Take đ1 = ({0}, {1}, {1}) as there is no distance of node 1 

from itself. Further, label the first node as ({0}, {1}, {1}, −). 

Step 3: 

Find đ𝑗 = min{ đį ⊕  đ𝑖𝑗}. For j =  2,3, … n. Since the 

numbers are SVNHFNs so here we use mean value 

of function instead of using each value of function. That is 

Ŝ1 =
Ŝ11+Ŝ12…Ŝ1𝑛

𝑛
, where 𝑛 = 1, 2,3 … 𝑛. 

Step 4: 

If the value of distance occurs against a unique į = 𝑟. Then 

j is marked as [đ𝑗 , 𝑟].  

If the values of distance do not occur against a unique į. It 
represents more than one SVNHF paths from a node. So, to 

get the shortest among several paths, use the score function of 

SVNHFNs. 

Step 5: 

Let [đ𝑛, 𝑘] is the label of the destination node then the 

shortest displacement between initial and final node is đ𝑛. 

Step 6: 

Since [đ𝑛 , 𝑘] is the label as destination node. So, for 

finding SVNHF shortest path from first node to last node, we 

check the label of node 𝑘. Let it be [đ𝑛 , 𝑙]. Then we check the 

label of node 𝑙 and so on. Repeat this process to obtain the 

initial node. 

Step 7: 

Hence, the SVNHF shortest path can be obtained by using 

step 6. 

4.1 Example 

Consider a network based on SVNHG given in Fig. 9 

where the distance between the vertices is a SVNHFN. Using 

the proposed approach, the shortest path is computed as 

follows: 

 

Fig. 9:    SVNHF network. 

The path between every two nodes is described in 

Table 1 using SVNHFNs. 

Table 1:    (SVNHF Network edges). 

Edges  Distances 

1 – 2 ({0.7}, {0.4,0.1}, {0.6}) 

1 – 3 ({0.2,0.4}, {0.1}, {0.7}) 

2 – 3 ({0.4}, {0.3}, {0.1}) 

2 – 5 ({0.6,0.5}, {0.7}, {0.2,0.1}) 

3 – 4 ({0.3,0.6}, {0.2}, {0.4,0.1}) 

3 – 5 ({0.8}, {0.4}, {0.9}) 

4 – 6 ({0.9}, {0.7}, {0.5}) 

5 – 6 ({0.7,0.2}, {0.3}, {0.6}) 
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Now we compute the shortest path by using the described 

algorithm as follows: 

As the destination node is 6 so 𝑛 = 6. Let đ1 =
({0}, {1}, {1}) and mark the source node as ({0}, {1}, {1}, −) 

(say node 1), đ𝑗 can be found as follows. 

Iteration 1: 

Since the only predecessor of node 2 is 1, put į = 1 and 

ĵ = 2, by algorithm we get đ2 as 

đ2 =  min{ đ1 ⊕ đ12} 

= min(({0}, {1}, {1}) ⊕ ({0.7}, {0.4,0.1}, {0.6})) 

= min (({0}, {1}, {1})  ⊕ ((0.7), (0.25), (0.6)))  

= ({0.7}, {0.25}, {0.6)} 

Minimum occurs for one value of į = 1. So, vertex 2 is 

labeled as [({0.7}, {0.25}, {0.6)}), −1] 

Iteration 2: 

Since 1 and 2 are the predecessor of node 3 so 

Put į = 1, 2 and j = 3, by algorithm 

đ3 = min{ đ1 ⊕ đ13 , đ2 ⊕ đ23}. 

= 𝑚𝑖𝑛 {(({0}, {1}, {1})
⊕ ({0.2,0.4}, {0.1}, {0.7}), ({0.7}, {0.25}, {0.6})
⊕ ({0.4}, {0.3}, {0.1} ). 

= 𝑚𝑖𝑛({0.3}, {0.1}, {0.7}), ({0.82}, {0.08}, {0.06}). 

Using score function, we can get the minimum: 

𝑠({0.3}, {0.1}, {0.7}) = 0.5 and 

𝑠({0.82}, {0.08}, {0.06}) = 0.89. 

So, the đ3 = ({0.3}, {0.1}, {0.7}). 

The minimum occurs for į = 1. So, vertex 3 is labeled as 
[({0.3}, {0.1}, {0.7}), 1]. 

Iteration 3: 

Node 3 is the predecessor of node 4 so put į = 3 and 𝑗 =
4, by algorithm 

đ4 = min{ đ3 ⊕ đ34} 

= min({0.3}, {0.1}, {0.7}) ⊕  

({0.3,0.6}, {0.2}, {0.4,0.1}) 

= min {({0.3}, {0.1}, {0.7}) ⊕ 

({0.45}, {0.2}, {0.25}} = ({0.61}, {0.02}, {0.18}) 

Minimum occurs for į = 3. So, vertex 4 is labeled as 

[({0.61}, {0.02}, {0.18}), 3]. 

Iteration 4: 

Node 2 and node 3 are predecessor of node 5 so put į =
2, 3 and  j = 5, by algorithm 

đ5 = min{ đ2 ⊕ đ25 , đ3 ⊕ đ35} 

= min{{0.7}, {0.25}, {0.6}) ⊕ ({0.6,0.5}, {0.7}, {0.2,0.1}),  

({0.3}, {0.1}, {0.7}) ⊕ ({0.8}, {0.4}, {0.9}) 

= min {({0.7}, {0.25}, {0.6}) ⊕ ({0.55}, {0.7}, {0.15}),  

({0.3}, {0.1}, {0.7}) ⊕ ({0.8}, {0.4}, {0.9})} 

= min (
{0.88}, {0.18}, {0.09}),

 ({0.86}, {0.04}, {0.63}
) 

By score function we can get that, 

đ5 = ({0.86}, {0.04}, {0.63}) 

Minimum occurs for į = 3. So, vertex 5 is labeled as 

[({0.86}, {0.04}, {0.63}), 3]. 

 

Fig. 10:    (Flowchart of algorithm). 

Iteration 5: 

Nodes 4 and 5 are the predecessor of node 6 so put į = 4, 5 

and j = 5, by algorithm 

đ6 = min{ đ4 ⊕ đ46 , đ5 ⊕ đ56}. 
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= min {({0.61}, {0.02}, {0.18}) ⊕ ({0.9}, {0.7}, {0.5}), 

= ({0.86}, {0.04}, {0.63})  ⊕ ({0.7,0.2}, {0.3}, {0.6})}. 

= min {({0.61}, {0.02}, {0.18}) ⊕ ({0.9}, {0.7}, {0.5}), 

= ({0.86}, {0.04}, {0.63}),⊕ ({0.45}, {0.3}, {0.6})}. 

= min {({0.96}, {0.01}, {0.09}),  

({0.92}, {0.01}, {0.38})} 

By score function we get that 

đ6 = ({0.92}, {0.01}, {0.38}). 

Minimum occurs for į = 5. So, vertex 6 is labeled as 

[({0.92}, {0.01}, {0.38}), 5]. 

Since the destination point is đ6. So, the shortest displacement 

from vertex one to six is provided as: 

({0.92}, {0.01}, {0.38}). 

The shortest way can be determined as follows: 

Node 6 is labelled as [({0.92}, {0.01}, {0.38}), 5] 

Node 5 is labelled as [({0.86}, {0.04}, {0.63}), 3] 

Node 3 is labelled as [({0.61}, {0.02}, {0.18}), 1]. 

Hence, the shortest way is 1 ⟶ 3 ⟶ 5 ⟶ 6 

with the SVNHF value of distance being ({0.92}, {0.01},   
{0.38}). 

In Fig. 10 the dotted line represents the shortest path and 

Table 2 provides the path of different nodes. 

Table 2:    Shortest path. 

Nodes No. (j) 𝑑𝑖 Shortest path from 1st 

node to jth node 

2 ({0.7}, {0.25}, {0.6}) 1 ⟶ 2 

3 ({0.3}, {0.1}, {0.7}) 1 ⟶ 3 

4 ({0.61}, {0.02}, {0.18}) 1 ⟶ 3 ⟶ 4 

5 ({0.86}, {0.04}, {0.63}) 1 ⟶ 3 ⟶ 5 

6 ({0.92, } {0.01}, {0.38}). 1⟶3⟶5⟶6 

 

Fig. 11:    Shortest path network of SVNHFNs. 

5. Conclusions 

In this article, an algorithm for computing the shortest path 

in a network having nodes in the form of SVNHFNs is 

developed. The key findings of the present study are as under: 

a. The concept of SVNHFG is introduced which is an 
extension of neutrosophic graph and hesitant fuzzy 
graph. 

b. Terms like complement, subgraphs, degree and path in 
SVNHFGs are defined and supported with examples. 

c. An algorithm for computing shortest path is proposed 
which is further demonstrated by a flowchart. 

d. A numerical example is solved using the proposed 
algorithm where the shortest path in a network is 
computed among all possible paths. 

e. It is observed that the results obtained in this study are 
compatible with those presented by Broumi et al. 
[9-13]. 

In future, our aim is to extend this work to produce further 

interesting graph theoretic results in the environment of 

SVNHFGs and to utilize them in multi-attribute decision 

making and supply chain management problems. 
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