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A B S T R A C T 

Complications of optimization problem associated with Fixed Head Short Term Hydrothermal 

Scheduling (STHTS) are not only greatly obscure but also enclose numerous constraints. 

Generally non-linear, non-convex and clustered search space is connected with STHTS problem. 
Number of techniques, from simplex to complex, have already been used and implemented by 

research scholars in order to solve STHTS and management related problems. A very powerful 

and robust technique is necessary to efficiently optimize STHTS problem. With this objective, 
Improved Particle Swarm Optimization technique implemented here to comparatively better 

optimize STHTS problem. 

 

 

1. Introduction 

Major chunk of electrical power generated worldwide 

is due to hydro and thermal resources. Since hydro and 

thermal power plants have their own merits/demerits, 

their combination may be used to achieve the objective of 

reducing power generation cost. Use of effective 

scheduling techniques for this purpose is an area of active 

research. 

Short Term Hydrothermal coordination is a complex 

problem where the main objective is the minimization of 

the net cost of electricity with the coordinated operation 

of both hydro and thermal power plants. 

Hydrothermal Scheduling has become one of the main 

concerns in power generation systems that  determine the 

optimal usage of hydro and thermal resources while 

scheduling under a specific set of constraints. Efficient 

scheduling of existing resources plays a crucial role in 

bringing down the cost of power generation. STHTS is of 

paramount importance, particularly where the hydro 

sources are scarce and high cost of thermal generation has 

to be relied on to meet the power demands. Hydro system 

is more complex to tackle due to stochastic nature of 

availability and limited energy storage capability of 

reservoirs. Effective hydro-resource allocation, in 

conjunction with thermal resources, is necessary as it can 

lead to significant savings in fuel and associated costs. 

[1]. Hence the optimum scheduling of hydrothermal 

power plant has a key role to play in modern power 

systems. 

As the scheduling of hydrothermal power plant is a 

highly complex problem, a robust as well as flexible 

algorithm is required to solve this problem efficiently. 

Many researchers have worked on the optimal 

scheduling of STHTS problem to minimize the operation 

cost while satisfying the consumer demand as well as 

other constraints of hydrothermal power plants [2]. 

Previously, the researchers used base load procedure, best 

point loading and incremental cost criterion to arrive at a 

near-optimal solution to this problem. However, these 

techniques require more time to arrive at the solution, 

more memory size to store the values and have an 

additional drawback of dimensionality complications. The 

issues mentioned were later resolved by using 

Deterministic, Classical Deterministic and Heuristic 

methods [3-20]. 

The other most famous example of dimensionality 

reduction is “Principal Components Analysis” (CPA) [21] 

and Fisher's discriminant analysis (FDA) [22]. In these 

technique searches for directions in the data that have 

largest variance and subsequently project the data onto it. 

In this way, we obtain a lower dimensional representation 

of the data that removes some of the “noisy” directions. 

There are many difficult issues with how many directions 

one needs to choose. PCA perform dimensionality 

reduction while preserving as much of the variance in 

the high dimensional space as possible [21]. FDA perform 

dimensionality reduction while preserving as much of the 

class discriminatory information as possible [22]. 
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Presently, heuristic methods have gained popularity 

due to their versatility, flexibility and robustness. In 

Bacterial foraging algorithm (BFA), a new technique, a 

unit step length constant parameter is used which may 

shows good result for small optimization problem but 

shows poor performance in complex large scale problems 

[23, 24]. So to overcome these issues a run-length 

parameter introduced in Modified Bacterial Foraging 

Algorithm (MBFA) which is key factor to controlling the 

local and global minima. In MBFA a decreasing dynamic 

function is utilized to perform swim walk instead of 

constant step [28, 29]. Particle Swarm optimization (PSO) 

is becoming increasingly popular due to its versatility and 

robustness to find the global minimum optimal value [25, 

26]. In this manuscript, IPSO is implemented on three 

STHTS problems picked from [27, 28, and 29] and the 

comparison of IPSO, PSO and MBFA is given.   

The paper is organized such that Section 2 presents the 

mathematical modelling of the STHTS problem, Section 3 

presents the algorithm used along with its details. Section 

4 gives a comparison of IPSO, PSO and MBFA 

techniques and the conclusions are presented in Section 5. 

2. Mathematical Modeling 

In mathematical modeling the objective function of 

thermal power plant is defined in 2.1. Then hydraulic 

model of hydro plant is defined in 2.2. At the end 

constraints of both and hydro thermal power plant are 

defined in 2.3. 

2.1 Objective Function 

The objective function of the problem is minimizing 

the fuel cost of the thermal power plant as given below 

[30]. 

2

1 1

 
T No

oi oit oi oit oi
t i

xMinimize F P y P z
 

               (1) 

xoi, yoi and zoi are cost coefficients of thermal power plant, 

Poit is the output power of thermal unit during t, T is the 

index of the time interval and No is the index of thermal 

plants. 

2.2 Hydraulic Model 

Glimn-Kirchmayer describes water discharge model 

for fixed head as following [27, 28]: 

 hjt
jt

q K P                                (2) 

where qj is water discharge, t is time index, K is constant 

of proportionality and φ can be defined as: 

  2

0 1 2
hjt hjthjtm m mP P P   

                   
 (3) 

where m0, m1 and m2 are hydraulic model coefficients. 

The discharge rate qjk  model is following [27, 28] : 

2

hjt hjtjt j j j
q a P b P c                     (4) 

a, b, c are discharge rate coefficients and Phjt is the output 

of hydro unit during t.  

2.3 Constraints 

The objective of optimal scheduling is to minimize the 

operational costs while satisfying all hydrothermal 

constraints [31, 32]. 

The main purpose of a reliable power system is 

fulfilling the consumers demand while taking into 

consideration the transmission and other losses of the 

system. 

1 1

           
No Nh

oit hjt Dt Lt
i j

P P P P t T
 

                (5) 

PDT and PLT are consumer demand and Transmission 

losses respectively. 

Both hydro and thermal power plants have specific 

power generation capabilities. They should be operated 

within their lower and upper bounds.  

In case of hydro power plant the discharge rate qjk of 

whole interval should be equal to Volume of available 

water Vj. 

0

jjt

T

q dt V            (6) 

3. Particle Swarm Optimization (PSO) 

R. Eberhart and J. Kennedy [25] introduced Particle 

Swarm Optimization, a non-derivative, technique that 

later became a part of artificial intelligence. The 

technique produced estimated solutions to impossible and 

unusual numeric minimization and maximization 

problems. The idea of the technique is based on social 

behavior of individuals interacting with each other as well 

as with their surroundings i.e. bird flocking and/or fish 

schooling. The process of this technique follows natural 

scenario of group communication to share their 

knowledge while searching a common piece of food 

placed in an area. Although every individual does not 

know food site but on the basis of social behavior they all 

can easily pinpoint how far-away their food is. To track 

down the food site each bird adopts effective and best 

strategy by following the bird nearest to food. 

PSO is a multiple interacting intelligent parallel search 

technique in which individual member of inhabitants is 

recognized as a particle and the whole population is 

known as a swarm due to jagged movement of individuals 

in search space. 

The PSO has been already implemented on STHTS 

problem with different improvements. Wang and 

http://en.wikipedia.org/wiki/Intelligent_agent
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Zhang [33] introduced the refined form of PSO in which 

he divided the particles into many cluster. It shows good 

results but in this method required greater memory size. 

Umayal and Kamaraj [34] proposed an application to 

sort out the multi-objective optimization problem of 

short-term optimal generation schedule. Using this 

method net cost was minimized but some of the 

constraints violate in it and this algorithm was just 

implemented on simple HTS systems. The size of the 

system was not large. 

C. Samudi et al. [35] presented an improved form of 

PSO. In this method he took reservoir volume as a 

particle. It shows good results. 

S. Liu and J. Wang [36] presented a modified form of 

PSO. An inertia weight technique was used. But the issue 

of this technique was that it could not handle the 

constraints so penalty coefficient multiplied with net cost. 

G. Sreenivasn et al. [37] proposed an approach of 

particle swarm optimization. The thermal units were 

mathematically replaced by an equivalent unit. The 

system model incorporated the generated load power 

balance equations and net water discharge equation. In the 

algorithm constraints on the operational limits and on the 

reservoir volume were considered. The numerical 

findings showed that the algorithm was better than 

generic algorithm. It produced better solution quality and 

good convergence characteristics. 

W. Ying et al. [38] proposed a new form of PSO. In 

this algorithm values of two PSO parameters was 

changed. A new scheme was presented to tackle the 

different constraints. The algorithm was tested on four 

hydro units and an equal thermal unit. The results showed 

that the new scheme produced better results. It was robust 

and accurate in comparison with the other methods. 

Process of Particle Swarm Optimization (PSO) 

technique involves following steps: 

Step I: Input parameters of the system then randomly 

initialize the population within the limits of hydro and 

thermal power units. Particles are hydro and thermal 

generation power. Select 10 particles for each interval for 

each machine and also initialize the velocities in the limit 

of vmax and vmin. Velocity is the movement of particles 

towards optimum cost. 

Step II: Calculate the fitness value of each particle 

through objective function defined in equation (1) and (2). 

The obtained fitness value of a particle depicts the 

proximity among current position of that particle and its 

solution. The fitness value is the cost of the system. 

Step III: Using the fitness values obtained, find out the 

Pbest of each particle which is the position of each particle 

giving best fitness value. Pbest of each particle is updated 

iteratively. 

Step IV: The best position encountered by entire swarm 

Gbest is found in each interval. Gbest of each interval is also 

updated iteratively. 

Then calculate the velocity of each particle with the help 

of following formula: 

1

1 1 , 2 2

t t t t t t t

ij ij j best i ij j best ij
v v c r P x c r G x                  (7) 

where vij is velocity vector, Pbest is personal best of each 

particle and Gbest is global best of entire swarm, c1 and c2 

are cognitive and social parameters respectively, ɷ the 

inertial weight and r1 & r2 are random numbers.  

Step V: After calculating velocity component of each 

particle, update the position of particle by following eq. 

1 1t t t

ij ij ij
x x v                              (8) 

where xij is the position of each particle (power of 

machine). 
1t

ij
x 

show the updated values of power 

generation by each machine. On the basis of these 

updated velocities and position values, calculate the 

fitness value again and again.  

Step VI: The entire process continues until or unless all 

particle’s Pbest equal to Gbest and/or algorithm meets its 

maximum number of iterations. The flow chart of this 

algorithm is shown in Figure 1. 

 

Fig. 1:    IPSO’s flow chart 
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4. Improved Particle Swarm Optimization 

In PSO the most important part is the selection of 

parameters. Parameters selection increases the 

convergence rate of the algorithm and also helps to 

decrease the chances of premature convergence before the 

global minima. In ordinary PSO the value of cognitive 

and social parameters is taking as a constant (c1=c2=2.5) 

[39]. 

So in the improved particle swarm optimization 

algorithm we update the value of cognitive and social 

parameters in each iteration. By doing this the rate of 

convergence of PSO increased and premature 

convergence decreases. In IPSO the cognitive parameter 

is selected by taking the average of particle’s velocities 

for that interval and social parameter is selected by taking 

the average of particle’s positions for that interval. It 

shows better results and good convergence rate as 

discussed in Section 5. The box show the Pseudo code  

[40] and parameters’ values used in Improved Particle 

Swarm Optimization (IPSO) technique. 

5. Simulation Results 

The three test cases adopted from literature and PSO and 

IPSO algorithm have been implemented in MATLAB®. 

In all test cases 30 independent runs were conducted.  In 

ordinary PSO the value of c1 and c2 are 2.5 [39]. The 

results and cost comparisons made with [28, 29] and 

simple PSO [39] has been explained as follows: 

5.1 Test Case I 

Test case I consists of one thermal and two hydro 

units [26]. Cost function of thermal unit is following: 

2

1 3 3 3
( ( )) 0.01 ( ) 3.0 ( ) 15$ /F P t P t P t h  

 Hydro unit I and Hydro unit II functions are following: 

2 3

1 1 1

2 3

2 2 2

0.00005 0.03 0.2 . /

0.0001 0.06 0.4 . /

( ) ( ) ( )

( ) ( ) ( )

q P P M ft h

q P P M ft h

t t t

t t t

 

 




  

Volumes of both hydro units are 25.0 M.ft
3
 and 35.0 

M.ft
3
 respectively. 

The transmission loss coefficients are : 

  

-3

0.0 0.0 0.0

10 0.0 1.0 0.0

0.0 0.0 0.5

B

 
 


 
    

  

0

0.0

0.0

0.0

B

 
 


 
    

  00
0.0B   

The schedule of hourly demand of a day is listed in 

Table 1. IPSO implemented on the Test Case I. The 

optimum generated powers are tabulated in Table 2 with 

Discharge rate of both hydro units. 

 

 

 

Pseudo Code of IPSO for STHTS  

Input: (Popsize, maxit, i, ω, t, r1, r2, etc.);           Output: Global Best 
Initialize the population at t=0and i=0; 

     FOR p = 1, ………, popsize 

          Set Position vector 

               
t

ix = Randomly initialize the position of 

                         each particle in between
min max& x x ; 

          Set Velocity vector 

               
t

iv = Randomly initialize the velocity of 

                         each particle in between
min max& v v ; 

          Set Pbest= 
0

ix  

          Set Gbest= Best particle’s position  

     END 

WHILE     i ≤ maxit OR Pbest ≠ Gbest  

a. Calculate fitness value using equation (1) & (2); 

b. Update particle’s best positions; 

                      (Personal Best position) 

                      FOR p = 1, ………, popsize 

                           If     Fitness value <Pbest 

                                        Set current fitness value as new Pbest 

                           Else  Keep previous Pbest 

                           End 

                      END 

                      (Global Best position) 

                      Identify Gbest 

                           If       Pbest<Gbest 

                                           Set Pbest as new Gbest 

                            Else    Keep previous Gbest 

                           End 
c. Update parameters; 

                 Cognitive = c1 
                         = average of particle’s velocity in that interval 

                 Social = c2 

                         =average of particle’s position in that interval 

d. Update particle’s velocity; 

                      FOR p = 1, ………, popsize 

                           Calculate particle’s velocity using equation 

                              1

1 1 , 2 2

t t t t t t t

ij ij j best i ij j best ij
v v c r P x c r G x


          

 

                      END 
e. Evolve to new particle’s position; 

                      FOR p = 1, ………, popsize 

                           Calculate particle’s position using equation 

                              1 1t t t

ij ij ij
x x v

 
   

                      END 

f.      Set i = i + 1 

END 

Global Best = Gbest 

Interval = Time span for a Demand 

Popsize = Population/Swarm size = 10* No. of intervals 

maxit = Maximum number of iteration = 20 

ω = Inertial Weight = (xmax-xmin)/maxit 

xmax & xmin = Generation upper (Pmax) and lower (Pmin) limits 

t = Time 

r1& r2 = Random Numbers between (0, 1) 

c1 = .


T

V
ij

i
No of Particles

 

 

c2 = 
.


T

x
ij

i
No of Particles
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Table 1:    Hourly demand of test case I 

Interval 
Power 

demand 
Interval 

Power 

demand 

12am-1am 30.0 MW 12 pm -1pm 60.0 MW 

1am-2am 33.0 MW 1pm -2 pm 61.0 MW 

2am-3am 35.0 MW 2pm-3pm 65.0 MW 

3am-4am 38.0 MW 3pm-4pm 68.0 MW 

4am-5am 40.0 MW 4pm-5pm 71.0 MW 

5am-6am 45.0 MW 5pm-6pm 62.0 MW 

6am-7am 50.0 MW 6pm-7pm 55.0 MW 

7am-8am 59.0 MW 7pm-8pm 50.0 MW 

8am-9am 61.0 MW 8pm-9pm 43.0 MW 

9am-10am 58.0 MW 9pm-10pm 33.0 MW 

10am-11am 56.0 MW 10pm-11pm 31.0 MW 

11am-12pm 57.0 MW 11pm-12am 30.0 MW 

The total optimum cost of Test Case I which is 

calculated by using proposed IPSO is 838.9229$. The 

graphical and tabulated comparison of MBFA [28], PSO 

[39] and IPSO costs are in Figure 2 and Table 3 along 

with average time of IPSO. 

Table 2 :    Power and discharge rate for test case I 

Hour 

Output power 
of units (MW) 

Flow rate 
(M.ft3/h) 

Thermal 
unit 

Hydro 
unit 1 

Hydro 
unit 2 

Hydro 
unit 1 

Hydro 
unit 2 

1 8.5102 14.0157 7.9352 0.6303 0.8825 

2 8.1277 16.0117 9.3613 0.6932 0.9705 

3 7.881 17.3484 10.318 0.7356 1.0298 

4 7.5293 19.3286 11.736 0.7986 1.118 

5 7.3042 20.6487 12.683 0.8408 1.1771 

6 6.776 23.9331 15.044 0.9467 1.3253 

7 6.2984 27.1848 17.388 1.0525 1.4735 

8 5.5599 32.9726 21.574 1.2436 1.741 

9 5.4364 34.0671 22.367 1.2801 1.7921 

10 5.6408 32.2794 21.071 1.2205 1.7087 

11 5.7873 31.0667 20.193 1.1803 1.6524 

12 5.7109 31.6929 20.646 1.2011 1.6815 

13 5.4859 33.6235 22.045 1.2653 1.7714 

14 5.4359 34.0723 22.371 1.2803 1.7924 

15 5.1695 36.6092 24.213 1.3653 1.9115 

16 5.0275 38.0815 25.284 1.415 1.981 

17 4.8591 39.9711 26.659 1.4791 2.0707 

18 5.4132 34.2786 22.521 1.2872 1.802 

19 5.8848 30.2862 19.628 1.1545 1.6163 

20 6.2986 27.1834 17.387 1.0525 1.4735 

21 6.9806 22.627 14.105 0.9045 1.2662 

22 8.1269 16.0159 9.3643 0.6934 0.9707 

23 8.3816 14.6772 8.4076 0.6511 0.9116 

24 8.5133 13.9998 7.9239 0.6298 0.8818 

 

Fig. 2:    Cost Comparisons  

Table 3 :    Operational costs comparisons of STHTS 

 

IPSO 

Dollar ($) 

PSO [39] 

Dollar ($) 

MBFA [28] 

Dollar ($) 

IPSO 

 average time 

Fuel Cost 838.9229 851.9515 848.2512 11.9822 Secs 

 

5.2 Test Case II 

Test case II consists of three thermal units and one 

hydro unit [28]. Cost functions of thermal units are 

following : 
2

1 1 1 1
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2 2 2 2
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3 3 3 3
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Hydro unit function is following: 

2 3
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 The limits of the hydro and thermal units are following: 

        4
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 The transmission loss coefficients are: 
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The Volume of hydro unit is 25000.0m
3
. The schedule 

of hourly demand of a day is listed in Table 4. 

Table 4:    Demand of  test case II 

Interval 
Power 
Demand 

Interval 
Power 
Demand 

12am-1am 175.0 MW 12 pm -1pm 565.0 MW 

1am-2am 190.0 MW 1pm -2 pm 540.0 MW 

2am-3am 220.0 MW 2pm-3pm 500.0 MW 

3am-4am 280.0 MW 3pm-4pm 450.0 MW 

4am-5am 320.0 MW 4pm-5pm 71.0 MW 

5am-6am 360.0 MW 5pm-6pm 425.0 MW 

6am-7am 390.0 MW 6pm-7pm 400.0 MW 

7am-8am 410.0 MW 7pm-8pm 375.0 MW 

8am-9am 440.0 MW 8pm-9pm 340.0 MW 

9am-10am 475.0 MW 9pm-10pm 300.0 MW 

10am-11am 525.0 MW 10pm-11pm 250.0 MW 

11am-12pm 550.0 MW 11pm-12am 200.0 MW 

IPSO implemented on the Test Case II. The optimum 

generated powers are tabulated in Table 5 with Discharge 

rate of hydro unit. 

Table 5 :    Power and discharge rate for test case II 

Hour 

Output Power of all Units (MW) 
Flow rate 

(m3/h) Thermal 

plant 1 

Thermal 

plant 2 

Thermal 

plant 3 
Hydro 

1 66.2199 40 64.6765 10.0496 347.05 

2 76.4631 40 70.6307 10.0496 347.05 

3 91.3804 45.5961 83.0208 10.0496 347.05 

4 118.948 59.4408 109.7248 10.0496 347.05 

5 140.42 70.0859 124.7465 10.0496 347.05 

6 153.677 77.3254 138.5873 17.7555 514.025 

7 165.135 82.5319 143.4195 29.7944 789.15 

8 171.91 85.8606 149.9024 38.0615 988.15 

9 181.742 91.1859 157.9274 49.7316 1283.025 

10 191.17 95.51 166.4084 64.7121 1685.5 

11 200 111.777 178.4316 85.7267 2295.475 

12 200 125.596 185.5388 96.73 2636 

13 200 166.027 157.6221 100.0086 2740.275 

14 200 130.23 171.0749 93.0004 2518.95 

15 200 105.413 169.9423 75.6294 1995.775 

16 186.585 93.0776 159.2703 54.3723 1404.825 

17 179.417 89.2809 148.0566 43.6681 1127.775 

18 171.609 85.5063 147.0763 33.7014 882.175 

19 168.231 84.8462 133.8841 23.8083 650.175 

20 156.155 77.7572 128.9902 10.9667 366.55 

21 131.969 65.7855 113.2068 10.0401 346.85 

22 109.998 55.1111 90.1824 10.0401 346.85 

23 86.7263 43.2325 69.5479 10.0401 346.85 

24 75.7221 40 62.3011 10.0401 346.85 

The total optimum cost of Test Case II which is 

calculated by using proposed IPSO is 24081.5999$. The 

graphical and tabulated comparison of MBFA [28], PSO 

[39] and IPSO costs are in Table 6 and Figure 3 along 

with average time of IPSO. 

Table 6:   Operational costs comparisons of STHTS 

 

IPSO 
Dollar ($) 

PSO [39] 

Dollar ($) 
MBFA [28] 
Dollar ($) 

IPSO average 

time 

Fuel Cost 24,081.5999 24,132.6601 24,267 8.7002 Secs 

 
Fig. 3:    Cost comparisons 

4.1 Test Case III 

Test case III having single unit of thermal and hydro 

plants [29]. Cost functions of thermal plant with its 

generating limits are following : 
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The transmission losses are: 
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The demand schedule of two intervals of a day is 

listed in Table 7. 
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Table 7 :    Demand of test case II 

Interval 
Power  

demand 

12am-12pm 1200.00 MW 

12pm-12am 1500.00 MW 

IPSO implemented on the Test Case III. The optimum 

generated powers are tabulated in Table 8 along with 

Discharge rate of hydro unit. 

Table 8 :    Power and discharge rate for test case III 

Interval 

Output Power of all Units 
(MW) 

Flow rate 
(acre-ft/h) 

Thermal 
unit 

Hydro 
unit 

Hydro 
unit 

1 557.9322 678.8442 3703.8556 

2 694.6794 865.1029 4629.5614 

The total optimum cost of Test Case III which is 

calculated by using proposed IPSO is 169,616$. The 

graphical and tabulated comparison of MBFA [29], PSO 

[39] and IPSO costs are in Table 9 and Figure 4 along 

with average time of IPSO. 

Table 9 :    Operational costs comparisons of STHTS 

 

IPSO 
Dollar ($) 

PSO [39] 
Dollar ($) 

MBFA [29] 
Dollar ($) 

IPSO 
average 

time 

Fuel Cost 169,616.1 169,641.7 169,630 
2.0821 

Secs 

 
Fig. 4 :    Cost comparisons 

4. Conclusion 

The paper presents the application of particle swarm 

optimization technique in solving fixed-head short-term 

hydrothermal scheduling problem. Near optimal solutions 

were obtained as an output of the process which depicts 

the robustness as well as the effectiveness of the 

algorithm. IPSO gives comparatively better results when 

compared with the results obtained by modified BFA. 
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