
The Nucleus 52, No. 2 (2015) 45-49

www.thenucleuspak.org.pk

 45

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

Optimized k-Nearest Neighbor Search with Range Query

M. Rehman and T. Ahmad

Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan

madeeha.rehman5@gmail.com; Tauqir_ahmad@uet.edu.pk

A R T I C L E I N F O

Article history :

Received : 09 March 2015

Revised : 27 April 2015

Accepted : 30 April, 2015

Keywords :

Range Query
k-NN,

Geospatial Object

Density Based Range Query

A B S T R A C T

K-Nearest Neighbor search is used extensively in fields like computer vision, DNA specification,

object recognition and many more. Online map applications are also used tremendously due to
the advances in Geographic Information System (GIS) data. These geospatial objects can be

retrieved by using spatial range query. In our proposed work we find the nearest neighbors

across any query point q, using an over estimated value of k. The Range Query calculated area
is used to estimate the number of k neighbors. If the initial value of k doesn’t reveal all the

nearest neighbors inside R, the value of k is multiplied with a constant factor epsilon. In this way

all the nearest neighbors inside R are retrieved with in 1 or 2 iterations. The computational
complexity of the proposed algorithm turns out to be O(n), compared to the complexity of

Density Based Range Query algorithm i.e., O log(n2 + n). This makes our proposed algorithm a

more optimized solution.

1. Introduction

Geographic Information System (GIS) is computer

software that helps visualize, store and manipulate all

types of spatial or geographical data. It helps us find

locations like real estate site selection; route selection etc.

A general issue in GIS is the Nearest Neighbor search.

Nearest Neighbor search is used to find the closest (or

similar) points to a query point q in a given Range [1]. In

a nutshell, the problem is to find k- nearest neighbors (k-

NN) in a given Range, where k is the number of nearest

neighbors to find [2]. The space in which we find the

number of k- neighbors known as Range Query is a

rectangular window of finite area.

A Density Based (DB) Range Query Algorithm given

by [3] finds nearest neighbors to a query point q, using

Density estimation technique. This algorithm estimates

the density of objects around the query point, and use this

estimated value as the initial k value. The estimation of

objects around the query location is done by global

estimation method. In Global estimation technique, the

algorithm finds total number of objects in the geospatial

database (the GIS database in which all the location data

is stored) and calculates the area of the minimum

bounding rectangle (MBR) that surrounds all objects. The

value of k is calculated through the formula given in

equation (1).

 k = N/Aglobal * π . R
2
q (1)

Where N is the total number of objects in the

geospatial database, Aglobal is the area of MBR, R is the

area of the Range Query and q is the query location.

If the resultant k-NN search does not retrieve all the

nearest neighbors, then another approach local estimation

is used using the k value from equation (1).

 k‟ = k/Aglobal * π . R
2
q (2)

The local estimation is repeated as many times unless

all the nearest neighbors in a Range query are retrieved. It

takes up to 3 to 4 iterations to completely find all the k-

NN inside the Range. This method increases the overall

complexity of the DB Range Query algorithm i.e., O log

(n
2
 + n) and therefore cannot be used with geospatial

databases where the database size is large [3].

In this research, we have proposed a k-NN Search

Algorithm using Range Query. This algorithm estimates

the number of neighbors around a query point according

to the area of the Range query. It provides the complete

coverage of all the geospatial objects inside the Range

Query, with in 1 or 2 iterations of the algorithm. The

complexity of proposed algorithm is calculated to be

O(n). The solution to this problem is helpful in major

areas like online maps, location findings and route

selections [4].

2. Problem Statement

Given a database of spatial objects say „P‟, we have to

find only those spatial objects that fall in the nearest

location of our query „q‟. The problem statement is

formally defined as: To find all objects „P‟ in a given

region „R‟ that are nearest to query „q‟.

 Corresponding author

M. Rehman and T. Ahmad / The Nucleus 52, No. 2 (2015) 45-49

46

The distance function is used to calculate the shortest

path between the query „q‟, and any point pi. This

function is known as the Euclidean distance or the

Manhattan distance and is used to calculate the distance in

k-Nearest Neighbor Query [5]. Formally we can define

the Euclidean distance as: the length of a straight line

between two points in space [6]. Mathematically the

Euclidean distance can be calculated by the formula given

in equation (3) [7]:

 d= ∑
i=1(P1i – P2i)

2

 (3)

Where, P1i and P2i are the two points between which

the Euclidean distance is found.

Mathematically it can be described as given a set of

point‟s p1, p2, p3, p4… We find the nearest neighbor to

each point according to a query, using the distance

function d.

This can be mathematically written as:

If

 P = {p1, p2, p3, p4} (4)

Then

 q = {qp1, qp2, qp3, qp4} (5)

Using the value of P from equation (4) in equation (5)

 q = q {p1, p2, p3, p4…} (6)

 q = q{p} (7)

For equation (4) and (6) it is assumed for simplicity

that all the points in set P fall in the nearest neighbor

location of query point q.

So, the problem statement is described as: Provided a

region R, find all the spatial objects in this region using

the k-NN search. In such situations the user has no control

and information about how big is the database and how

many nearest neighbors would be located. In order to

solve this issue, we propose to use the area of the Range

Query to estimate the k value. In such a way, the time

taken to retrieve the k-NN is reduced. The number of

times the algorithm iterates is also reduced to 1 or 2

iterations. This hence provides more fast and accurate

results.

3. Proposed Solution

In this paper, we have provided an algorithmic

approach that will provide an optimistic and yet efficient

version of Density Based Range Query algorithm

discussed earlier in section 1. Our proposed work uses

only the area of the query region R, to calculate the value

of k, and always provide an overestimated value of k. By

[3] overestimation does not increase the cost of algorithm,

the number of iterations are greatly reduced and thus the

results are fast.

Suppose we have a Range Query R of some finite

area. We need to find all the spatial objects scattered

inside the Range Query. For this purpose we need query

point „q‟. q is kept as the centre point of R, so to search

the range query equally from all sides. Then, all the

objects that fall inside the Range Query R are said to be

the nearest neighbors of q.

We can say that:

 R = {O1, O2 … On} (8)

If k = 3, the search on R would yield:

 k-NN = {O1, O3, O5} (9)

Then by evaluating equation (9) on equation (8), it is

found that

 k-NN ⊆ R (10)

Equation (10) reveals that all the objects of k-NN

must be equal or belong to the objects of R i.e., k-NN

objects are inside R.

k value is determined by estimating the number of

nearest neighbors in the Range Query area. This

estimation yields an overestimated value of nearest

neighbors that has two major benefits:

i. Overestimation doesn‟t incur any cost on the system

[3].

ii. Yet it decreases the number of iterations the

algorithm runs, thus decreasing the execution time.

Suppose the maximum distance from q to any

neighbor during a 4-nn search is found, this is the radius

of k-NN circle. The k-NN circle radius is compared to

Range Query radius to find if all neighbors inside the

query region are found. If the result is smaller, another

iteration of the k-NN search is made to increase the

number of k.

The proposed algorithm is given in Table 1, producing

two main benefits:

i. Cost / overhead and execution time of the algorithm

is reduced.

ii. Distance Browsing will produce far better results [9].

The main focus of this proposed solution is to

minimize the overhead that occurs when the algorithm is

iterated again and again to find the nearest neighbors. The

complexity of the algorithm is calculated using the Big O

notation [10]. The proposed algorithm complexity is

calculated to be O(n), as there is only one loop used in

this algorithm. But, the complexity of DB Range Query

Algorithm is calculated to be O log(n
2
 + n), as the DB

Algorithm uses two loops.

M. Rehman and T. Ahmad / The Nucleus 52, No. 2 (2015) 45-49

 47

Table 1: Proposed k-NN search algorithm

k-NN Search Algorithm

Dr = √ xul
2 + Ylr

2

q = Dr / 2;

K = π . Dr;

Knn[] = KNNSerch(q, K)

r = mxDistKnn (q, Knn[])

while r < = Dr do

clear Knn[]

ε = const value

Knew = K * ε

Knn[] = KNNSerch (q, Knew)

r = mxDistKnn (q, Knn[])

end while

result[] = Result (Knn[], Xul, Ylr)

return result[]

4. Performance Evaluation

We have implemented this proposed algorithm and the

DB Range Query Algorithm in Mat lab and have run it on

a laptop with core i3 and 6 GBs of Ram. Time is a major

factor while testing this algorithm. The correct time that a

computer uses to run a specific piece of code is hard to

find in a multitasking system. Therefore we have

measured the time a number of times and then have used

the average value. We have used a synthetic dataset with

uniform distribution of points [11]. In a uniform

distribution, the objects are distributed uniformly over a

given space (x, y). On the same uniform dataset, we have

implemented DB Range Query Algorithm. The time

found is very large as is shown in Figure 1.

Fig. 1: DB range query algorithm, relation between range query size

and execution time

The trend of the algorithm in Figure 1 is quite large;

the time is always above 1 sec. We have taken the time in

milliseconds and the size of Range Query in percentages

as shown in figure 1. We depict how the time increases if

we increase the size of the Range Query. The initial

execution time of the DB Algorithm takes up to 10.3

milliseconds, on subsequent increases of the Range Query

size the time decreases, but the average time taken is

always greater than 10 milliseconds. Even the best case in

the depiction takes time greater than 10 milliseconds,

shown where the Range Query size is 15% and the time is

slightly greater than 1 second. This is the major drawback

of DB Range Query Algorithm.

All experiments are conducted by differing the range

query size, and analyzing how the values of k nearest

neighbor and time change according to it. The results are

particular, the values of k nearest neighbors are increasing

as we increase the size of the Range query, and this is

obvious. We have changed the size of the range query

from 1% to 30%. Thus the relation between Range query

size R and number of k neighbor are found to be directly

proportional.

4.1 Statistical Analysis

In Statistical analysis, we find how the size of Range

query affects the number of k nearest neighbors. As the

algorithm uses an overestimated k value, the Range query

algorithm finds all the nearest neighbors within 1 or 2

iteration and as the size of range query increases, k value

increases proportionally. The value also shows

presentable change when we change the value of the

constant factor epsilon ε. This is depicted in Figure 2.

Fig. 2: Relation between range query size and k-nearest neighbor

As we see in Figure 2, the numbers of k nearest

neighbor‟s increases proportionally on increasing the size

of range query that can be found by equation (11).

 k = π * R (11)

R is radius of the Range query. And every next

interval of the k value increases in a similar fashion,

which can be calculated by equation 13. The size of

Range query and k value is increased with small intervals.

 R = R + 1.39 (12)

 k = k + 5 (13)

M. Rehman and T. Ahmad / The Nucleus 52, No. 2 (2015) 45-49

48

By using the value of R by (12) in equation (13)

 K = π (R + 1.39) (14)

By using the value of k from equation (13) in equation

(11)

 R = (k + 5) / π (15)

Thus, we have 2 formulas for calculating the next

interval values of k-Nearest Neighbor and size of Range

Query. Now we will see how time effects the calculations

of k nearest neighbors. Whether we increase the range

query size or the number of k nearest neighbors found is

increased, the efficiency of the algorithm is not affected.

That is the time it take to run the algorithm shows a

similar fashion as in Figure 3. We have experimented the

time by two ways. By increasing the value of Range

Query and observing the time. Secondly, observing the

time curve on different values of k.

Figure 3: Relation between time (seconds) and range query size (%age)

Figure 4: Relation between time and values of k-NN

We have increased the Range Query size from 1% to

60%, and studied the effect of execution time on Range

query size and k nearest neighbors found. We have

trained a large set of data points (neighbor locations) to

find out, what would happen if query size and the number

of nearest neighbors increase and to see the effects on

distance browsing [9]. And it is found that, whether the

size of k nearest neighbors increase or the Range Query

size is increased, the time it takes to find the k nearest

neighbor remains same.

For simplicity, we have only shown the results where

the constant value is epsilon ε = 2. The trends for ε = 1.5

and ε = 1.1 shows similar fashion. We can see here the

time curve is similar in Figure 3 and Figure 4. Thus it is

proved that the relation between k and R is directly

proportional. From Figure 2 the graph line of k-NN

increases as the R size increases. This relationship is

shown in equation (16).

 k ∝ R (16)

The time curve depicts that the worst case occurs once

in the life time of the algorithm, at 50% Range Query Size

it takes up to 0.38 seconds. All other values the execution

time remains inside 0.26 seconds, without any effect on

whether we increase the size of the Range or the database

size increases. In another case shown in figure 3 and

figure 4, when the Range Query size is 30% and the

number of k– neighbors founds are above 200. The

algorithm takes 0.285 seconds to reveal all the neighbors.

The data points scatter is kept large for all the calculations

performed. So to check how the algorithm behaves if the

size of the number of spatial objects increases, in terms of

the execution time taken to retrieve them. The resultant

accuracy of our proposed algorithm is also greater than

DB Range Query Algorithm. As, our proposed algorithm

finds more nearest neighbors in less time, it thus yields

the accurate results in lesser number of iterations. While

the DB range Query algorithm takes more time, and more

number of iterations to find the accurate result.

We can say that the number of k nearest neighbors

increases as we increase the size of the Range Query and

the execution time remains under 0.38 seconds. The

algorithm finds the complete number of neighbors in one

or two iterations by overestimating the value of k. As we

see the number of k neighbors does not affect the

efficiency of algorithm, proves that this can work best

with distance browsing.

5. Results and Discussion

The comparison between the Density Based Range

Query Algorithm and Proposed Algorithm is shown in

Table 2. For both algorithms, same sizes of the Range

query are used, and both algorithms are executed equal

number of times. We have increased the Range Query

Size from 3% to 21% and have calculated the effects of

both the algorithms. Our proposed approach finds more

neighbors in less time. But the DB Range Query

Algorithm produces very small k-Nearest Neighbors.

M. Rehman and T. Ahmad / The Nucleus 52, No. 2 (2015) 45-49

 49

Table 2 shows different k values and the

corresponding execution time at different Range Query

sizes. For all executions of the Density Based Algorithm,

the execution time is more than 1 second. While, the

proposed Algorithm gives overestimated values of k, and

the execution time does not exceed 0.3 seconds on

average. The maximum number of k-Neighbors founded

by the DB Range Query Algorithm is k = 60. On similar

number of iterations, our proposed algorithm gives k =

138 and the execution time is dramatically lower, as

shown in Table 2. The DB Range Query Algorithm takes

a maximum time of 1.3 seconds to find k-Nearest

Neighbors.

Table 2: Comparison of execution time between the density based

range query algorithm and the proposed algorithm

Range

Query

Size

Density Based Range

Query Algorithm
Proposed Algorithm

Number of

k-Nearest
Neighbors

Execution

Time
(seconds)

Number of

k-Nearest
Neighbors

Execution

Time
(seconds)

3% 2 1.047310 22 0.263060

5% 4 1.175698 32 0.265016

7% 8 1.193790 50 0.265244

9% 10 1.049320 58 0.268675

11% 14 1.051839 66 0.263270

13% 22 1.040362 84 0.269638

15% 28 1.043013 94 0.264292

17% 38 1.036382 112 0.269141

19% 44 1.051083 120 0.265594

21% 60 1.268208 138 0.269423

6. Conclusion

In this research, we have designed an algorithm to

search k number of nearest neighbors according to the

query point „q‟ in a Query region „R‟. The algorithm finds

the area of the region and then calculates the number of k

neighbors in that region. The proposed algorithm finds

maximum number of k neighbors in minimal time, and

does not use complex calculations. The major inspiration

for this algorithm is taken from Density Based Range

Query algorithm. In DB Range Query algorithm, global

and local estimation techniques are used for area

calculation, which increases the overhead of execution.

References

[1] Y. Tao, J. Zhang, D. Papadias and N. Mamoulis, "An Efficient cost

model for optimization of nearest neighbor search in low and

medium dimensional spaces", Journal of IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 10, pp. 1169-1184,

2004.

[2] K.A. Hawick, P.D. Coddington and H.A. James, "Distributed

frameworks and parallel algorithms for processing large scale

geographic data," Journal of Parallel Computing - Special issue:

High Performance Computing with Geographical Data, vol. 29, no.

10, pp. 1297-1333, 2003.

[3] W.D. Bae, S. Alkobaisi, S.H. Kim, S. Narayanappa and

C. Shahabi, "Web data retrieval: Solving spatial range queries

using k-Nearest neighbor searches", Geo Informatica , vol. 13, no.
4, pp. 483-514, 2009.

[4] G. Beskales, M.A. Soliman and I.F. Ilyas, "Efficient search for the
top-k probable nearest neighbors in uncerain databases",

Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 326-339,

August 2008.

[5] B. Aydin, "Parallel algorithms on nearest neighbor search", Survey

Paper for Parallel Algorithms - Georgia State University, April
2014.

[6] K. Katu and T. Hosino, "Solving k-nearest neighbor problem on
multiple graphics processor", Proceedings of the 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing,

pp. 769-773, 15 July, 2010.

[7] T. W. P. Series, "Euclidean Distance, raw, normalized and double-
scaled coefficients", Advanced Projects R&D, September 2005.

[Online]. Available: http://www.pbarrett.net/techpapers/euclid.pdf.

[8] D. Liu, E.P. Lim and W.K Ng, "Efficient k nearest neighbor

queries on remote spatial databases using range estimation",

Procceedings of 14th International Conference on Scientific and
Statistical Database Management, pp.121-130, 26 July, 2002.

[9] G.R. Hjaltason and H. Samet, "Distance browsing in spatial
databases", ACM Transactions on Database Systems, vol. 24, no.

2, pp. 265-318, 1999.

[10] P. Danziger, "Big O Notation", 2015. [Online]. Available:

http://www.wikipedia.org/w/wiki.phtml?title=Big_O_notation.

[11] V. Garcia, E. Debreuve and M. Barlaud, “Fast k nearest neighbor

search using GPU”, IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, Anchorage,

AK, 23-28, pp. 1-6, June 2008.

