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A B S T R A C T 

K-Nearest Neighbor search is used extensively in fields like computer vision, DNA specification, 

object recognition and many more. Online map applications are also used tremendously due to 
the advances in Geographic Information System (GIS) data. These geospatial objects can be 

retrieved by using spatial range query. In our proposed work we find the nearest neighbors 

across any query point q, using an over estimated value of k. The Range Query calculated area 
is used to estimate the number of k neighbors. If the initial value of k doesn’t reveal all the 

nearest neighbors inside R, the value of k is multiplied with a constant factor epsilon. In this way 

all the nearest neighbors inside R are retrieved with in 1 or 2 iterations. The computational 
complexity of the proposed algorithm turns out to be O(n), compared to the complexity of 

Density Based Range Query algorithm i.e., O log(n2 + n). This makes our proposed algorithm a 

more optimized solution.  

 

1. Introduction 

Geographic Information System (GIS) is computer 

software that helps visualize, store and manipulate all 

types of spatial or geographical data. It helps us find 

locations like real estate site selection; route selection etc. 

A general issue in GIS is the Nearest Neighbor search. 

Nearest Neighbor search is used to find the closest (or 

similar) points to a query point q in a given Range [1]. In 

a nutshell, the problem is to find k- nearest neighbors (k-

NN) in a given Range, where k is the number of nearest 

neighbors to find [2]. The space in which we find the 

number of k- neighbors known as Range Query is a 

rectangular window of finite area. 

A Density Based (DB) Range Query Algorithm given 

by [3] finds nearest neighbors to a query point q, using 

Density estimation technique. This algorithm estimates 

the density of objects around the query point, and use this 

estimated value as the initial k value. The estimation of 

objects around the query location is done by global 

estimation method. In Global estimation technique, the 

algorithm finds total number of objects in the geospatial 

database (the GIS database in which all the location data 

is stored) and calculates the area of the minimum 

bounding rectangle (MBR) that surrounds all objects. The 

value of k is calculated through the formula given in 

equation (1). 

         k = N/Aglobal * π . R
2
q        (1) 

Where N is the total number of objects in the 

geospatial database, Aglobal is the area of MBR, R is the 

area of the Range Query and q is the query location. 

If the resultant k-NN search does not retrieve all the 

nearest neighbors, then another approach local estimation 

is used using the k value from equation (1). 

         k‟ = k/Aglobal * π . R
2
q         (2) 

The local estimation is repeated as many times unless 

all the nearest neighbors in a Range query are retrieved. It 

takes up to 3 to 4 iterations to completely find all the k-

NN inside the Range. This method increases the overall 

complexity of the DB Range Query algorithm i.e., O log 

(n
2
 + n) and therefore cannot be used with geospatial 

databases where the database size is large [3]. 

In this research, we have proposed a k-NN Search 

Algorithm using Range Query. This algorithm estimates 

the number of neighbors around a query point according 

to the area of the Range query. It provides the complete 

coverage of all the geospatial objects inside the Range 

Query, with in 1 or 2 iterations of the algorithm. The 

complexity of proposed algorithm is calculated to be 

O(n). The solution to this problem is helpful in major 

areas like online maps, location findings and route 

selections [4]. 

2. Problem Statement 

Given a database of spatial objects say „P‟, we have to 

find only those spatial objects that fall in the nearest 

location of our query „q‟. The problem statement is 

formally defined as: To find all objects „P‟ in a given 

region „R‟ that are nearest to query „q‟.  
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The distance function is used to calculate the shortest 

path between the query „q‟, and any point pi. This 

function is known as the Euclidean distance or the 

Manhattan distance and is used to calculate the distance in 

k-Nearest Neighbor Query [5]. Formally we can define 

the Euclidean distance as:   the length of a straight line 

between two points in space [6]. Mathematically the 

Euclidean distance can be calculated by the formula given 

in equation (3) [7]: 

           d=  ∑
i=1(P1i – P2i)

2

         (3) 

Where, P1i and P2i are the two points between which 

the Euclidean distance is found.  

Mathematically it can be described as given a set of 

point‟s p1, p2, p3, p4… We find the nearest neighbor to 

each point according to a query, using the distance 

function d. 

This can be mathematically written as: 

If 

   P = {p1, p2, p3, p4}         (4) 

Then 

   q = {qp1, qp2, qp3, qp4}         (5) 

Using the value of P from equation (4) in equation  (5) 

         q = q {p1, p2, p3, p4…}          (6) 

   q = q{p}          (7) 

For equation (4) and (6) it is assumed for simplicity 

that all the points in set P fall in the nearest neighbor 

location of query point q.  

So, the problem statement is described as: Provided a 

region R, find all the spatial objects in this region using 

the k-NN search. In such situations the user has no control 

and information about how big is the database and how 

many nearest neighbors would be located. In order to 

solve this issue, we propose to use the area of the Range 

Query to estimate the k value. In such a way, the time 

taken to retrieve the k-NN is reduced. The number of 

times the algorithm iterates is also reduced to 1 or 2 

iterations. This hence provides more fast and accurate 

results. 

3. Proposed Solution 

In this paper, we have provided an algorithmic 

approach that will provide an optimistic and yet efficient 

version of Density Based Range Query algorithm 

discussed earlier in section 1. Our proposed work uses 

only the area of the query region R, to calculate the value 

of k, and always provide an overestimated value of k. By 

[3] overestimation does not increase the cost of algorithm, 

the number of iterations are greatly reduced and thus the 

results are fast.  

Suppose we have a Range Query R of some finite 

area. We need to find all the spatial objects scattered 

inside the Range Query. For this purpose we need query 

point „q‟. q is kept as the centre point of R, so to search 

the range query equally from all sides. Then, all the 

objects that fall inside the Range Query R are said to be 

the nearest neighbors of q.   

We can say that: 

   R = {O1, O2 … On}         (8) 

If k = 3, the search on R would yield: 

   k-NN = {O1, O3, O5}         (9) 

Then by evaluating equation (9) on equation (8), it is 

found that 

   k-NN ⊆ R       (10) 

Equation (10) reveals that all the objects of k-NN 

must be equal or belong to the objects of R i.e., k-NN 

objects are inside R.  

k value is determined by estimating the number of 

nearest neighbors in the Range Query area. This 

estimation yields an overestimated value of nearest 

neighbors that has two major benefits:  

i. Overestimation doesn‟t incur any cost on the system 

[3]. 

ii. Yet it decreases the number of iterations the 

algorithm runs, thus decreasing the execution time. 

Suppose the maximum distance from q to any 

neighbor during a 4-nn search is found, this is the radius 

of k-NN circle. The k-NN circle radius is compared to 

Range Query radius to find if all neighbors inside the 

query region are found. If the result is smaller, another 

iteration of the k-NN search is made to increase the 

number of k.  

The proposed algorithm is given in Table 1, producing 

two main benefits: 

i. Cost / overhead and execution time of the algorithm 

is reduced. 

ii. Distance Browsing will produce far better results [9].  

The main focus of this proposed solution is to 

minimize the overhead that occurs when the algorithm is 

iterated again and again to find the nearest neighbors. The 

complexity of the algorithm is calculated using the Big O 

notation [10]. The proposed algorithm complexity is 

calculated to be O(n), as there is only one loop used in 

this algorithm. But, the complexity of DB Range Query 

Algorithm is calculated to be O log(n
2
 + n), as the DB 

Algorithm uses two loops. 
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Table 1:    Proposed k-NN search algorithm 

k-NN Search Algorithm 

Dr = √ xul 
2 + Ylr 

2  

q = Dr / 2; 

K = π . Dr; 

Knn[] = KNNSerch(q, K) 

r = mxDistKnn (q, Knn[]) 

while r < = Dr do 

clear Knn[] 

ε = const value 

Knew =  K * ε  

Knn[] = KNNSerch (q, Knew) 

r = mxDistKnn (q, Knn[]) 

end while 

result[] = Result (Knn[], Xul, Ylr) 

return result[] 

4. Performance Evaluation 

We have implemented this proposed algorithm and the 

DB Range Query Algorithm in Mat lab and have run it on 

a laptop with core i3 and 6 GBs of Ram. Time is a major 

factor while testing this algorithm. The correct time that a 

computer uses to run a specific piece of code is hard to 

find in a multitasking system. Therefore we have 

measured the time a number of times and then have used 

the average value. We have used a synthetic dataset with 

uniform distribution of points [11]. In a uniform 

distribution, the objects are distributed uniformly over a 

given space (x, y). On the same uniform dataset, we have 

implemented DB Range Query Algorithm. The time 

found is very large as is shown in Figure 1. 

 

Fig. 1:  DB range query algorithm, relation between range query size 

and execution time 

The trend of the algorithm in Figure 1 is quite large; 

the time is always above 1 sec. We have taken the time in 

milliseconds and the size of Range Query in percentages 

as shown in figure 1. We depict how the time increases if 

we increase the size of the Range Query. The initial 

execution time of the DB Algorithm takes up to 10.3 

milliseconds, on subsequent increases of the Range Query 

size the time decreases, but the average time taken is 

always greater than 10 milliseconds. Even the best case in 

the depiction takes time greater than 10 milliseconds, 

shown where the Range Query size is 15% and the time is 

slightly greater than 1 second. This is the major drawback 

of DB Range Query Algorithm. 

All experiments are conducted by differing the range 

query size, and analyzing how the values of k nearest 

neighbor and time change according to it. The results are 

particular, the values of k nearest neighbors are increasing 

as we increase the size of the Range query, and this is 

obvious. We have changed the size of the range query 

from 1% to 30%. Thus the relation between Range query 

size R and number of k neighbor are found to be directly 

proportional.  

4.1 Statistical Analysis 

In Statistical analysis, we find how the size of Range 

query affects the number of k nearest neighbors. As the 

algorithm uses an overestimated k value, the Range query 

algorithm finds all the nearest neighbors within 1 or 2 

iteration and as the size of range query increases, k value 

increases proportionally. The value also shows 

presentable change when we change the value of the 

constant factor epsilon ε. This is depicted in Figure 2. 

 

Fig. 2:  Relation between range query size and k-nearest neighbor 

As we see in Figure 2, the numbers of k nearest 

neighbor‟s increases proportionally on increasing the size 

of range query that can be found by equation (11). 

   k = π * R       (11) 

R is radius of the Range query. And every next 

interval of the k value increases in a similar fashion, 

which can be calculated by equation 13. The size of 

Range query and k value is increased with small intervals. 

   R = R + 1.39       (12) 

   k = k + 5       (13) 

 



M. Rehman and T. Ahmad / The Nucleus 52, No. 2 (2015) 45-49 

48 

By using the value of R by (12) in equation (13) 

   K = π (R + 1.39)       (14) 

By using the value of k from equation (13) in equation 

(11) 

   R = (k + 5) / π       (15) 

Thus, we have 2 formulas for calculating the next 

interval values of k-Nearest Neighbor and size of Range 

Query. Now we will see how time effects the calculations 

of k nearest neighbors. Whether we increase the range 

query size or the number of k nearest neighbors found is 

increased, the efficiency of the algorithm is not affected. 

That is the time it take to run the algorithm shows a 

similar fashion as in Figure 3. We have experimented the 

time by two ways. By increasing the value of Range 

Query and observing the time. Secondly, observing the 

time curve on different values of k. 

 

Figure 3:  Relation between time (seconds) and range query size (%age) 

 

Figure 4:  Relation between time and values of k-NN 

We have increased the Range Query size from 1% to 

60%, and studied the effect of execution time on Range 

query size and k nearest neighbors found. We have 

trained a large set of data points (neighbor locations) to 

find out, what would happen if query size and the number 

of nearest neighbors increase and to see the effects on 

distance browsing [9]. And it is found that, whether the 

size of k nearest neighbors increase or the Range Query 

size is increased, the time it takes to find the k nearest 

neighbor remains same. 

For simplicity, we have only shown the results where 

the constant value is epsilon ε = 2. The trends for ε = 1.5 

and ε = 1.1 shows similar fashion. We can see here the 

time curve is similar in Figure 3 and Figure 4. Thus it is 

proved that the relation between k and R is directly 

proportional. From Figure 2 the graph line of k-NN 

increases as the R size increases. This relationship is 

shown in equation (16). 

    k ∝ R              (16) 

The time curve depicts that the worst case occurs once 

in the life time of the algorithm, at 50% Range Query Size 

it takes up to 0.38 seconds. All other values the execution 

time remains inside 0.26 seconds, without any effect on 

whether we increase the size of the Range or the database 

size increases. In another case shown in figure 3 and 

figure 4, when the Range Query size is 30% and the 

number of k– neighbors founds are above 200. The 

algorithm takes 0.285 seconds to reveal all the neighbors. 

The data points scatter is kept large for all the calculations 

performed. So to check how the algorithm behaves if the 

size of the number of spatial objects increases, in terms of 

the execution time taken to retrieve them. The resultant 

accuracy of our proposed algorithm is also greater than 

DB Range Query Algorithm. As, our proposed algorithm 

finds more nearest neighbors in less time, it thus yields 

the accurate results in lesser number of iterations. While 

the DB range Query algorithm takes more time, and more 

number of iterations to find the accurate result. 

We can say that the number of k nearest neighbors 

increases as we increase the size of the Range Query and 

the execution time remains under 0.38 seconds. The 

algorithm finds the complete number of neighbors in one 

or two iterations by overestimating the value of k. As we 

see the number of k neighbors does not affect the 

efficiency of algorithm, proves that this can work best 

with distance browsing. 

5. Results and Discussion 

The comparison between the Density Based Range 

Query Algorithm and Proposed Algorithm is shown in 

Table 2. For both algorithms, same sizes of the Range 

query are used, and both algorithms are executed equal 

number of times. We have increased the Range Query 

Size from 3% to 21% and have calculated the effects of 

both the algorithms. Our proposed approach finds more 

neighbors in less time. But the DB Range Query 

Algorithm produces very small k-Nearest Neighbors. 
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Table 2 shows different k values and the 

corresponding execution time at different Range Query 

sizes. For all executions of the Density Based Algorithm, 

the execution time is more than 1 second. While, the 

proposed Algorithm gives overestimated values of k, and 

the execution time does not exceed 0.3 seconds on 

average. The maximum number of k-Neighbors founded 

by the DB Range Query Algorithm is k = 60. On similar 

number of iterations, our proposed algorithm gives k = 

138 and the execution time is dramatically lower, as 

shown in Table 2. The DB Range Query Algorithm takes 

a maximum time of 1.3 seconds to find k-Nearest 

Neighbors.  

Table 2:   Comparison of execution time between the density based 

range query algorithm and the proposed algorithm 

Range 

Query 

Size 

Density Based Range 

Query Algorithm 
Proposed Algorithm 

Number of 

k-Nearest 
Neighbors 

Execution 

Time 
(seconds) 

Number of 

k-Nearest 
Neighbors 

Execution 

Time 
(seconds) 

3% 2 1.047310 22 0.263060 

5% 4 1.175698 32 0.265016 

7% 8 1.193790 50 0.265244 

9% 10 1.049320 58 0.268675 

11% 14 1.051839 66 0.263270 

13% 22 1.040362 84 0.269638 

15% 28 1.043013 94 0.264292 

17% 38 1.036382 112 0.269141 

19% 44 1.051083 120 0.265594 

21% 60 1.268208 138 0.269423 

6. Conclusion 

In this research, we have designed an algorithm to 

search k number of nearest neighbors according to the 

query point „q‟ in a Query region „R‟. The algorithm finds 

the area of the region and then calculates the number of k 

neighbors in that region. The proposed algorithm finds 

maximum number of k neighbors in minimal time, and 

does not use complex calculations. The major inspiration 

for this algorithm is taken from Density Based Range 

Query algorithm. In DB Range Query algorithm, global 

and local estimation techniques are used for area 

calculation, which increases the overhead of execution. 
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