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A B S T R A C T 

A statistical analysis was made of the activity concentrations measured in surface and deep soil 

samples for natural and anthropogenic -emitting radionuclides. Soil samples were obtained 

from 48 different locations in Gilgit, Pakistan covering about 50 km2 areas at an average 

altitude of 1550 m above sea level. From each location two samples were collected: one from 
the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including226Ra, 
232Th 40K and 137Cs were quantified. The data was analyzed using t-test to find out activity 

concentration difference between the surface and depth samples. At the surface, the median 
activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg-1 for 226Ra, 232Th, 137Cs and 40K 

respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 

26.2, 2.9 and 191 Bq kg-1 for the depth samples. Principal component analysis (PCA) was 
applied to explore patterns within the data. A positive significant correlation was observed 

between the radionuclides 226Ra and 232Th. The data from PCA was further utilized in linear 

discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified 
surface and depth samples with good predictability. 

 

1. Introduction 

Radiation dose to all living organisms on earth 

originates mostly from natural radionuclides [1]. These 

include 
40

K and radionuclides from 
238

U and 
232

Th series. 

The contribution of anthropogenic radionuclides to total 

dose is almost negligible. Uranium, thorium and 

potassium are present in earth crust at an average 

concentration of 2.7 µg g
-1

, 9-10 µg g
-1

and 1.4 % 

respectively [2-4]. Igneous rocks contain relatively higher 

amount of uranium (0.03-4.7 µg g
-1

) as compared to 

sedimentary rocks (1.5-2.2 %) [5]. The same is true for 

thorium and potassium. Classification of rock types is 

usually performed by a large number of factors, such as 

its physical properties and chemical constituents. Using 

instruments, it is now possible to generate a huge dataset 

containing a large number of variables. These include 

wavelengths, energies, elements, radionuclides etc. It is 

difficult to explore patterns inside a large dataset 

employing single variables with statistical data analysis 

tools. Multivariate methods have evolved with time, 

which help explore such datasets. Chemometrics provides 

powerful data analysis tools to interpret large data sets. 

Elemental contents along with chemometric methods have 

been used for the differentiation of healthy and diseased 

subjects such as hepatitis-C [6] and cancer patients [7]. 

Elemental composition has also been extensively 

employed in provenance studies [8]. There are several 

techniques from pattern recognition realm which facilitate 

this classification. Principal component analysis (PCA) is 

the most common method to explore data for this purpose 

[9]. Other more sophisticated techniques include 

discriminant analysis, cluster analysis, neural networks, 

support vector machine etc. [10, 11]. 

A number of analytical techniques have been used to 

collect soil data. In recent years, several pattern 

recognition methods have been employed in conjunction 

with different analytical techniques to classify soils using 

landscape [12], infrared spectrometry [13], radionuclides 

[14, 15] etc. Environmental monitoring studies also 

generate a large amount of data. The variations in 

environmental data include in homogeneity in the matrix 

and differences due to different source profiles. Dose 

from soil radioactivity depends upon the distribution of 

individual radionuclides in soil and their migration 

behaviour. The current paper explores the distribution of 

natural (
226

Ra, 
232

Th and 
40

K) and man-made (
137

Cs) 

radionuclides in surface and sub soil of Gilgit. 

Multivariate methods have been applied to find out any 

differences in the distribution of radionuclides on the 

surface and below. This characterization will help to 

understand soil properties for ecological, environmental 

and agricultural studies. 

2. Experimental 

In this study, data for 48 soil samples collected from 

the surface and at a depth of 6 – 10 cm from Gilgit 
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covering 50 km
2
 areas has been used. Gilgit is located at 

35
o
55

´
 N and 74

o
17

´
 E, at an average altitude of 1,500 m 

above sea level with 0.1 million population. The area has 

alluvial and lacustrine deposits due to blockage of river 

by glacial or landslide debris [16]. From each location, 

two samples were collected, mixed, dried in air, 

pulverized, sieved, homogenized and stored in plastic 

bottles. The sampling procedure and experimental 

conditions, in detail, can be found in our previous work 

[17]. 

3. Results 

The activity concentrations (Bq kg
-1

) of 
226

Ra, 
232

Th, 
137

Cs and 
40

K in the surface soil [17] have already been 

reported. The average activity for 
226

Ra, 
232

Th, 
137

Cs and 
40

K was 25.4, 29.1, 4.6 and 115 Bq kg
-1 

respectively for 

surface samples and was respectively 25.8, 35.1, 2.9 and 

191 for depth samples. Activity concentrations of all 

radionuclides followed log-normal distribution in all 

samples except for 
40

K, which was normally distributed in 

depth samples. There were significant positive 

correlations between the same radionuclides found in the 

surface and depth samples. 

4. Discussion 

The hypothesis that there is no difference between the 

means of paired samples is tested using one sided paired 

difference t-test [10]. The difference of activity between 

the surface and depth samples has been plotted in 

Fig. 1. It shows that most of the activity concentrations 

for 
226

Ra, 
232

Th and
 137

Cs are higher in the surface 

samples. It was, however, the other way around for 
40

K. 

The application of paired difference t-test confirms this 

prediction at 95% confidence level except for 
226

Ra. There 

are two samples (Nos. 8 and 18) having relatively higher 

activity concentrations of 
226

Ra. If these two samples are 

removed from the data and the t-test is applied again, it 

shows that activity concentration of 
226

Ra is also 

significantly higher in the surface than in the depth 

samples. 
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Fig. 1: Activity difference (Surface - Adept) plotted for different 

radionuclides 
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Fig. 2: Scores plot showing a distribution of two classes of samples 
across the line 

4.1 PCA 

PCA decomposes multivariate data into a set of 

abstract eigenvectors and an associated set of abstract 

eigen values [11, 18, 19]. Each eigen value presents a 

portion of the total variation in the data and each 

eigenvector is a linear combination of the original 

variables. PCA has been applied in this study to explore 

patterns within objects and within variables [20]. PCA 

was applied on the standardized data because activity 

concentrations of different radionuclides were on different 

scales. Data was standardized using Z-score [21]. The 

data matrix used for PCA was of size (964), i.e. 96 

samples (48 surface sample + 48 depth samples) and 4 

radionuclides. The first three principal components 

explained 97% of the total variance. Fig. 2 illustrates 

scores plot of second principal component (PC2) against 

the third principal component (PC3). The loadings plot, 

for the same PCs, is presented in  

Fig. 3 reveals 
232

Th and 
226

Ra in positive correlation. 

In  Fig. 2, the  depth  samples represented  by  black  solid 
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Fig. 3: Loadings plot shows positive correlation between 226Ra 

and 232Th 

squares are clearly distinct from the surface samples 

represented by red solid circles. In fact, it seems possible 

to draw a line between the two groups. If above the line, a 

sample will belong to the depth otherwise to the surface. 

4.2 Linear Discriminant Analysis (LDA) 

A better way to find distribution of samples between 

two or more classes is the use of the LDA [21]. It is a 

linear method with discriminating character. The method 

maximizes the variance between the classes and 

minimizes the variance within the classes. It can be 

represented by projecting the objects on to a line at right 

angles to the discriminating line. It is possible to 
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determine the centre of each class along the projection 

and if the distance to the centre of class A is greater than 

that to class B, the object is placed in class A, and vice 

versa. In supervised pattern recognition, the distance of an 

object is defined from the centre of a class. Using this 

distance the linear discriminant function is calculated as; 

       
  1

i A B AB if x x C x  
         (1)

 

where ABC  is the pooled variance – covariance matrix,  

      

   
 

1 1

2

N C N CA A B B
CAB

N NA B

  


 
         (2)

 

AN represents the number of objects in class A, and AC  

is the variance – covariance matrix for this group with Ax  

the corresponding centroid. Mahalanobis distance from 

the centre of class A is measured as: 

          
   1d x x C x xiA i A A i A

   
         (3) 

The predicted class for each object is the one whose 

centroid it is closest to the object. 

Discriminant analysis was performed on the scores of 

PC2 and PC3. The results yielded 95.8 % samples from 

the depth as correctly classified and 79.2 % from surface. 

This study shows that a combination of PCA and LDA 

may be applied to classify or differentiate samples on the 

basis of their activity concentrations if any differences 

exist in their activity levels. 

5. Conclusions 

In this study, distribution behaviour of four 

radionuclides (
226

Ra, 
232

Th, 
137

Cs and 
40

K) was determined 

in the surface and deep soil samples. The samples were 

collected from the surface and at a depth of 6 - 10 cm 

from Gilgit. Principal component analysis revealed a 

positive significant correlation between 
232

Th and 
226

Ra. 

The t-test revealed that the levels of activity 

concentrations were significantly higher in the surface 

than in depth for 
226

Ra, 
232

Th and 
137

Cs, whereas, the 

activity of 
40

K was higher in depth than in the surface 

samples. These differences in activity concentrations at 

the surface and at depth were exploited to discriminate 

samples as surface or sub surface samples using principal 

component analysis and linear discriminant analysis. 

Modeling using linear discriminant analysis showed good 

predictability for this distribution. 

References 

[1] R. L. Kathren, "NORM sources and their origins". Appl. Radiat. 

Isot., vol. 49, p. 149-168, 1998. 

[2] UNSCEAR, Effects of Atomic Radiation, United Nations, New 

York, 1982. 

[3] NCRP, Ionizing radiation exposure of the population of the United 

States, National Council on Radiation Protection and 
Measurements, Bethesda, 1988. 

[4] H. J. M. Bowen, Environmental chemistry of the elements, 

Academic Press, London, 1979. 

[5] NCRP, Report No. 50, Environmental Radiation Measurements, 

National Council on Radiation Protection and Measurement, 

Washington DC, 1992. 

[6] G. R. Lloyd, S. Ahmad, M. Wasim and R. G. Brereton, "Pattern 

recognition of inductively coupled plasma atomic emission 

spectroscopy of human scalp hair for discriminating between 
healthy and hepatitis C patients", Anal. Chim. Acta, vol. 649, 

p. 33-42, 2009. 

[7] Z. Zhang, H. Zhuo, S. Liu and P. de B Harrington, "Classification 

of cancer patients based on elemental contents of serums using 

bidirectional associative memory networks", Anal. Chim. Acta, 
vol. 436, p. 281-291, 2001. 

[8] C. Peltz and M. Bichler, "Classification of archaeologically 

stratified pumice by INAA", J. Radioanal. Nucl. Chem., vol. 248, 

p. 81-87, 2001. 

[9] I. Jolliffe, "Principal component analysis", Wiley Online Library, 

2015. 

[10]  Massart, B. Vandeginste, L. Buydens, S. De Jong, P. Lewi and 

J. Smeyers-Verbeke, Handbook of Chemometrics and 

Qualimetrics, Part A, Elsevier, Amsterdam, 1997. 

[11] B. G. M. Vandeginste, D. L. Massart, L. M. C. Buydens, S. D. 

Jong, P. J. Lewi and J. Smeyers-Verbeke, "Handbook of 
chemometrics and qualimetrics, Part B", Elsevier, Amsterdam, 

1998. 

[12] A. Zhu, "Mapping soil landscape as spatial continua: the neural 

network approach". Water Resources Research, vol. 36, p. 663-

677, 2000. 

[13] P. H. Fidêncio, I. Ruisánchez and R. J. Poppi, "Application of 

artificial neural networks to the classification of soils from Sao 
Paulo state using near-infrared spectroscopy", Analyst, vol. 126, 

p. 2194-2200, 2001. 

[14] S. Dragović and A. Onjia, "Classification of soil samples 

according to their geographic origin using gamma-ray 

spectrometry and principal component analysis". J. Environ. 
Radioact., vol. 89, p. 150-158, 2006. 

[15] S. Dragovic and A. Onjia, "Classification of soil samples 

according to geographic origin using gamma-ray spectrometry and 

pattern recognition methods". Appl. Radiat. Isot., vol. 65, p. 218-

224, 2007. 

[16] J. F. Ivanac, D. M. Traves and D. King, "Records of the Geological 

Survey of Pakistan, vol. VIII Part 2", Geological Survey of 
Pakistan, 1956. 

[17] M. Ali, M. Wasim, M. Arif, J. H. Zaidi, Y. Anwar and F. Saif, 

"Determination of the natural and anthropogenic radioactivity in 

the soil of Gilgit—a town in the foothills of Hindukush range", 

Health Phys., vol. 98 (Supplement 2), p. S69-S75, 2010. 

[18] S. Wold, K. Esbensen and P. Geladi, "Principal component 
analysis". Chemom. Intell. Lab. Syst., vol. 2, p. 37-52, 1987. 

[19] M. Daud, M. Wasim, N. Khalid, J. H. Zaidi and J. Iqbal, 

"Assessment of elemental pollution in soil of Islamabad city using 

instrumental neutron activation analysis and atomic absorption 

spectrometry techniques", Radiochim. Acta, vol. 97, p. 117-122, 
2009. 

[20] M. Wasim, M. S. Hassan and R. G. Brereton, "Evaluation of 

chemometric methods for determining the number and position of 

components in high-performance liquid chromatography detected 

by diode array detector and on-flow 1H nuclear magnetic resonance 
spectroscopy", Analyst, vol. 128, p. 1082-1090, 2003. 

[21] R. G. Brereton, Chemometrics: Data Analysis for the Laboratory 

and Chemical Plant, Wiley, Chichester, 2003. 

 


