
The Nucleus 51, No. 2 (2014) 281-289

Towards formalization of inspection using petrinets 281

Paki stan

The Nucleus

The Nucleus

A Quarterly Scientific Journal of Pakistan
Atomic Energy Commission

N C L E A M , I S S N 0 0 2 9 - 5 6 9 8

TOWARDS FORMALIZATION OF INSPECTION USING PETRINETS

M. JAVED,
*
M. NAEEM, F. BAHADUR and A. WAHAB

1

Department of Information Technology, Hazara University, Mansehra, Pakistan

1Department of Mathematics, Hazara University, Mansehra, Pakistan

(Received February 14, 2014 and accepted in revised form April 14, 2014)

Achieving better quality software has always been a challenge for software developers. Inspection is one of the most efficient

techniques, which ensure the quality of software during its development. To the best of our knowledge, current inspection

techniques are not realized by any formal approach. In this paper, we propose an inspection technique, which is not only backed by

the formal mathematical semantics of Petri nets, but also supports inspecting concurrent processes. We also use a case study of an
agent based distributed processing system to demonstrate the inspection of concurrent processes.

Keywords: Inspection, Petri nets, Formalized inspection, Requirements engineering, Mathematical analysis

 of Petri nets1.Introduction

1. Introduction

Software inspection process (or inspection) was

proposed back in 1972 by IBM to improve software

quality and to enhance programmer’s efficiency [1].

Inspection is the most effective method to identify

defects during software development life cycle model

(SDLC). It is an umbrella activity, which continues

throughout the development process from requirements

elicitation to testing and implementation. Inspection is

used for cost reduction by removing defects and for

other benefits that improve functionality for the users

[2].

Figure 1. Graph between employee & schedule (borrowed from

[1]).

For example, consider a graph plotted for the

number of employees required in SDLC against the time

required for development in Figure 1. Figure 1 states

that companies using inspection based SDLC require

fewer employees than those that do not use inspection.

Inspection makes the development process more

effective by reducing cost and improving throughput

[1].

Radicein in [3] showed that the cost of defect removal

is much higher in the absence of formal inspection.

Further, they proved that the later the defect is caught the

greater is the cost paid against that defect. For example,

one needs to pay 100, 1000 and 10000 units for each

defect caught during inspection, testing and at the time of

use by the system users, respectively [3]. This has been

depicted in Figure 2 below.

Figure 2. Defect cost relationship (this figure is borrowed from [3]).

Due to the umbrella activity, inspection continues

alongwith the SDLC. Because software specification

provides building blocks for software, we will consider

the use of inspection in requirements engineering. Defects

in requirements specification are more harmful than in any

other stage in SDLC. Although mathematical

requirements use formal verification, they may not

perfectly capture the correct objectives [4, 5]. The use of

inspection in requirements improves the chances

developing the right product [6].

 Corresponding author : mohammadnaeem@gmail.com

The Nucleus 51, No. 2 (2014)

282 M. Javed et al.

Figure 3. Defect origins and discovery in the absence of inspection

[4, 5].

For example, Figure 3 shows that it is important to

discover defects at the requirements engineering level.

The later we discover the defects in the SDLC, the greater

will be the loss. If we get complete, accurate and defect

free requirements, it is then a sign of quality product. In

the absence of formal inspection in SDLC, more defects

will be discovered later (during maintenance phase) which

makes them Latent Defects. Latent defects are always

harmful for the companies because it causes the loss of

time, resources and even the goodwill, just to name a few.

From the analysis of existing inspection methods

and techniques we say: It is difficult to find defects from

products easily particularly, for requirements because

there are no model based (graphical model) inspections.

For instance, analysts and designers use UML diagrams

to represent process, data, functionality and other

aspects of software to get clear picture of the system.

Apart from using diagram for the software

requirements, diagrams also help in understanding the

behavior, inputs and outputs easily. As natural language

is ambiguous in nature, its use in either of requirement

and inspection may lead to misunderstanding and

ambiguity.

By using a method with diagram and mathematical

analysis, a software inspector can understand all aspects of

the products. Without using a model there are chances of

undetected defects even if inspection has been applied. A

graphical model with mathematical analysis can catch all

defects particularly for concurrent processes because these

are difficult to inspect. A Petri net is a powerful tool to

model all kinds of processes including concurrency.

Furthermore, in case of change request in a product the

existing inspection techniques require re-inspecting the

complete module, but by using the proposed process, it’ll

be easier to identify updated part hence easier to re-inspect

if needed.

In this paper, we propose inspection by using formal

methods based on Petri nets. The rest of the paper is

structured as follows: Section 2 provides the information

that is important to understand the technical contributions

of the paper, whereas Section 3 discusses and compares

our approach with state of the art approaches that are

closer to ours. In Section 4, we cover the contributions of

this paper, while the Section 5 concludes and gives a

glimpse of future work.

2. Background

Petri net is a graphical modeling technique, which

was discovered by Carl Ada Petri in August 1939 [7].

The graphical models of Petri nets are also supported by

the corresponding mathematical equivalences. Petri nets

are mostly used to capture the behavior of systems. The

behavior can be divided into two parts: one part is a rule

stating when a specific transaction will be executable,

while the second is the overall behavior, how the

executions will occur [8]. Petri net is suitable graphical

model for the process of inspection because it has

capability to model and inspect different behaviors.

2.1 Concepts and Notations

We use place and transition in the process of

inspection, as shown in the left and right of the figure

below, respectively.

Figure 4. Place (Left) and Transition (Right).

We will refer place as an input or an output and

transition by function due to understandable wording in

software engineering communities. We will encode

input state, output state and function by In, On and Fn,

respectively, where n ≥1.

2.2 Properties of Petri Nets

2.2.1 Concurrency

Petri net is an effective way to model and inspect the

concurrency of processes. For example, Figure 5 models

the two processes t1 and t2 of concurrent nature. By this

property, Petri net can model systems of distributed

control with multiple processes executing in parallel.

Figure 5. Concurrency in Petri nets.

The concurrent processes contribute towards the

increase in the throughput hence, it is important for

software companies to consider it in the SDLC.

The Nucleus 51, No. 2 (2014)

Towards formalization of inspection using petrinets 283

2.2.2. Priority

Petri nets can be used for the modeling and

inspection of the system requiring priority procedure to

be implemented. For example, in the Figure below,

P1 P2

 t1 t2

Figure 6. Priority in Petri nets.

t1 has higher priority than t2 so, t1 will be executed

first.

2.2.3 Non-determinism

Petri nets provide non-deterministic modeling so, in

the situations where a system has to decide from

multiple options Petri net can be used to model &

resolve conflicts between different processes for

instance, in Figure 7 either t1 or t2 can be fired.

Figure 7. Non-determinism in Petri nets.

2.2.4 Reachability

Reach-ability graph is the property of Petri nets

which states whether or not a particular state can be

achieved from a respective input state. This property

can be used to inspect input and output of a function.

For instance, the Figure 8(a) below shows the initial

marking of Petri nets. Initially, there were two tokens in

the P1 while P2 has no token in it. After firing, there is

no token in P1 and two tokens in P2. The Figure 8(b)

shows the reach-ability graph illustrating token firing

sequence.

Figure 8. Reachability graph: Initial marking (Left) graph (Right).

2.2.5 Liveliness

The lifetime of a process is shown by the liveliness.

Figure 9. Liveliness of a process by using vending machine.

By this process it would be easy to inspect processes

against correct and incorrect inputs. We show the

liveliness by using a small example of a vending

machine in Figure 9. To get a candy, one has to deposit

15 or 20 cents. If less than the required amount has been

deposited then machine would be halted or dead.

2.3 Validation of Petri Nets

The validation mechanism of Petri nets used in our

paper is inspired by [9]. There are a number of

conditions which must hold for the validation of Petri

nets. Here we only discuss those conditions that are

helpful in our approach of inspection.

1. Before firing a transition tj ∈ T, the following

condition must hold

M(pi) ≥ W(pi, tj), pi ∈ I (tj) (1)

If the above condition is satisfied then the transition

tj will be enabled. In above Formula 1, pi is an input

place of transition tj, while W (pi, tj) is the weight of arc

from pi to tj. In the process of inspection M (pi) is also

an input with the requirements for the said process and

W (pi, tj) is the precondition for the input place pi to the

process tj in order to complete the functionality. We can

say that to perform the functionality for a process

(transition in Petri nets) all input requirements should be

completed according to the condition. In the process of

inspection this helps to find whether a process with

given inputs is executable or not?

2. After firing a transition tj, the next state M'(pi) of

Petri net is defined as:

M'(pi) = M(pi) - W(pi,tj) + W (tj, pi), (2)

where i =1, 2, 3,, n

Pi is again an input place of transition tj , tokens

removed from input place according to the weight of arc

The Nucleus 51, No. 2 (2014)

284 M. Javed et al.

are added to the output place according to weight of the

arc connecting transition and output place. For

inspection, M'(pi) is output place of a process according

to the conditions on W (tj, pi) (arc from process to

output place), which will consume inputs from M (pi) as

per requirements on W (pi, tj) (arc from input to

process).

3. Related Work

We categorize this section into: Application of Petri

nets which states their use in SDLC which is followed

by the discussion on the current approaches of

inspection. We will conclude this section by adding the

drawbacks of the current inspection techniques. To the

best of our knowledge, there is no technique which uses

Petri nets in inspection, so we will end up with the

discussion about the need of formalized Petri net based

inspection.

3.1. Applications of Petri nets

Petri nets are being used in different areas of

computer science some of them are listed below.

3.1.1. Software Design

Petri nets are very much helpful to model the

systems, especially the interactive system. Petri nets

provide a modeling notation which is helpful in

capturing dynamic behavior of programs. It helps

designing components of software for representing the

critical areas [10]. In manufacturing technology

deadlocks are very troublesome so, it is very much

essential to address this issue. Chao in [11] used Petri

nets to provide deadlock control mechanism in

sequential processes.

3.1.2. Workflow Management

Petri net is a powerful tool for the analysis of

existing systems. It helps to understand difficult

workflows. Alongwith designing complex workflow,

Petri nets can be used to verify the workflow [12]. Petri

net is becoming popular for workflow management

systems [13].

3.1.3. Concurrent Programming

Petri nets are being used to verify the process of

con-current systems. The application architectures

which are based on concurrent processing can be

modeled with Petri nets. Barkaoui et al. in [14] have

used Petri nets to modularize complex systems to verify

the concurrent programming.

3.2. Existing Inspection Approaches

Existing software inspection techniques are listed

below [15, 16].

3.2.1. Ad hoc

It is an informal method, which does not require any

training. In this technique experienced programmers

utilize their experiences to perform inspection.

3.2.2. Checklist-Based Reading (CBR)

This method uses a checklist of questions for

inspection. These questions are checked during

inspection of systems. It is most widely used method in

the development sector.

3.2.3. Abstraction-driven Reading

This technique was developed for the inspection of

object oriented code. In this method inspector reads the

code in a systematic manner. Each class is inspected

alongwith its functions. As natural language abstracts

need to be created so in-depth understanding required.

3.2.4. Use Case Reading

In this method, dynamic interaction of objects in

object-oriented environment being inspected is checked.

This technique helps finding out the usage defects in

classes.

3.2.5. Usage-Based Reading

In this method inspectors try to find those defects

which effect user. This technique is most effective for

design process.

3.2.6. Stepwise Abstraction

This is for poorly documented programs. It is to

inspect program functionality.

3.2.7 Scenario-Based Reading

This technique is used for requirement specification.

For this method scenarios are created to discover

defects.

3.2.8 Perspective-Based Reading

In this technique reviewer has to adopt a

prospective. Inspector can adopt designer prospective to

verify for the next step of design. User prospective will

generate documents understandable to the user.

3.2.9. N-Fold Inspections

This technique is checklist based. N independent

teams carry out same inspection with similar check-lists.

3.2.10 Phased Inspection

By this method inspection carried out in all phases

of SDLC with a small number of teams. This is also a

checklist based inspection.

3.2.11 Traceability-Based Reading

It was developed for design documents to verify the

correctness of the system.

The Nucleus 51, No. 2 (2014)

Towards formalization of inspection using petrinets 285

3.3 Drawbacks of Existing Inspection Approaches

The existing approaches of inspection do not help

understand requirements easily. Furthermore, none of

the existing inspection techniques is realized by any

modeling technique. The graphical models help

inspecting the processes. For example analysts and

designers use UML to represent process, data,

functionality and other aspects of software to present the

system clearly. Using graphical models for inspecting

requirements can help to understanding the behavior,

inputs and outputs of a process easily. Inspection in the

absence of graphical models might leave uncovered

defects in the system. A graphical model can catch

mostly defects and can help us to clear the ambiguities.

In this paper, we are going to use Petri nets as a

graphical model for inspection.

4. Petri Net Based Inspection

As already mentioned, we will use Petri net as a

graphical model of inspecting the system. Proposed

inspection technique can be used in all phases of SDLC,

but we are considering inspection for the requirements

engineering process. Our approach is able to uncover all

type of defects in the requirements e.g. commission,

omission, clarity, ambiguity, capacity etc. We use input

process, output process and functions in our approach.

Our approach consists of two stages:

First stage inspects the individual requirements,

while other inspects overall functionality of different

modules in a system. Defects found during inspection

are written in the defect log and queries related to

requirements should be asked to the requirements

engineer for complete understanding of system

specification.

During the inspection inspector should keep in mind

the following types of questions:

1. What, e.g., what types of functions can be per-formed

on an input?

2. What if, e.g., what if an unauthorized access of a

process happens?

The questions which cannot be answered by the

related documents are followed by””. For example, a

question about the availability of a system after being

crashed can be written as: After how much time

system should be available, once it crashes.

We inspect every requirement separately with all

possible inputs and outputs. The defect log is updated in

case a defect is found. At the end of our approach,

inspection report should be completed. Inspection report

can later be used to: 1) Check the completeness and

correctness of the design and code because we will have

detailed information of all inputs, processes and outputs;

2) Analyze the behavior and functionality of overall

system due to the presence of inspection model based

on Petri net notations. Furthermore, test case can also be

inspected against each requirement’s inspection result.

For the application of our approach we borrowed

SRS from [17]–a document of social security services of

South Africa. The main idea behind that SRS is: The

constitution of South Africa makes provisions of

financial benefits for their needy citizens. This benefit

works as a poverty alleviation program of the

government. This scheme is getting mature and the

national government has developed norms and standards

for the implementation of policies relating to this. Let us

now start inspecting the requirements provided in SRS.

4.1 Inspecting Individual Requirements

At this stage we inspect requirements individually.

For the elaboration of this stage, we apply the proposed

inspection process on the subset of the requirements

taken from the SRS provided in [17]. For the application

of inspection we move on as:

1. The description of a requirement in natural language.

2. Inspection shown in the form of Petri nets which is

followed by its corresponding equivalence in the

mathematical form.

3. Input, Process and Output explain the main input,

functionalities at the processes shown in inspection,

and the output of a process involved in the inspection

respectively.

In each inspection we show the diagrammatic

representation of requirement by using Petri net

followed by the mathematical equivalence of the

functionalities captured in the diagram. For example,

M (pi) = M (Ii) captures the fact that initial marking of

pi in Petri net is equal to the input values at input place

Ii. The mathematical formulas are followed by the

description of inputs and the questions that are not

answered by the relevant documents. Listed below is

individual inspection applied on SRS for Department of

Social Developments System [17]:

4.1.1 Requirement # 1

A grant application is submitted to the Attesting

Officer. Attesting officer collects the information from

application form; manual information will be replaced

with new information submitted by applicant, which are

Applicant name, ID number, Date of application (cannot

exceed current date), Grant Type, Race, Pay Point

Number, Service Point, District Office and Form

Number.

The Nucleus 51, No. 2 (2014)

286 M. Javed et al.

Inspection

As

 M(pi) = M(I1) and W(pi, tj) =W(I1, F1)

So,

M(I1)≥ W(I1, F1)

Input

 Complete Applicant detail

 Whether these are complete inputs to

enable/perform F1?

4.1.2 Requirement # 2

a) After ensuring that the application is in order,

Attesting Officer opens and bar codes the

application. In this process, three barcodes are

printed: The first and the second barcodes are

attached to the original form and its carbon copy

respectively, whereas the third is attached to the

folder containing the application; this folder will be

stored in the registry.

b) After adding the bar codes, application is moved to

the Verification Officer. The amount of time each

Officer spends on an application will be monitored.

Inspection

As

M(pi) =M(I1) W(pi, tj) =W(I1, F1)

M'(pi) = M'(O1) W(tj, pi) = W(F1, O1)

So,

M'(O1) = M(I1) - W(I1, F1)+ W(F1, O1)

Input

 Application for grant

 Process On F1 Attestation Officer will

 Attach bar codes on original, carbon copy and

folder.

 Scan the application

Output

 Folder with barcodes (Which will be the output on

O1)

 Scanned application

 What is the format of barcode?

 What kind of values would be saved alongwith

scanned document?

4.1.3 Requirement # 3

Any problems experienced with the grant

application will result in the Verification Officer

returning the grant application to the Attesting Officer.

The reason for returning the application must be

recorded for the purposes of monitoring these problems.

Inspection

As,

M(pi) = M(O1) and W(pi, tj) =W(O1, F2)

So,

M(O1) ≥ W(O1, F2)

 What information will be required to access

application?

If this condition is true

As,

M(pi) =M (O1) W(pi, tj) = W(O1, F2)

M'(pi) = M'(O2) W (tj , pi) = W(F2,O2)

So,

M'(O2) = M(O1) - W(O1, F2)+ W(F2, O2)

OR

If condition is false

As,

M (pi) = M (O1) W(pi, tj) = W(O1, F2)

M'(pi) = M'(I1) W (tj, pi)= W(F2, I1)

So,

M'(I1)= M(O1) - W(O1, F2)+ W(F2, I1)

 I1 (Application) F1 (Process by Attestation Officer) O1

 (Folder with barcode)

Complete Applicant

Details

Applicant details with

Bar code

Complete Applicant

Details

Applicant details with

Bar code

Check application for

grant
Problems in Application

Application is valid

F2 (Accessing App by Verification Officer)

I1 F1 O1

O2 (Verified Application)

The Nucleus 51, No. 2 (2014)

Towards formalization of inspection using petrinets 287

Input

 Application folder with barcodes

 Process On F2 Verification officer will

 Access the application.

 Send back rejected application

 Record Reasons of rejection.

 What is the format to record reasons?

Output

 Approved application

OR

 Application need to reconsider

4.1.4 Requirement # 4

Verification Officer prepares the receipt for the

applicant of the valid applications.

Inspection

As,

M(pi) =M(O2) W(pi, tj) = W(O2, F3)

M'(pi) = M'(O3) W(tj, pi)= W(F3, O3)

So,

M'(O3) = M(O2) - W(O2, F3)+ W(F3, O3)

Input

 Approved application

 Process On F3 Verification officer will

 Write down verification date.

 Prepare receipt for applicant.

Output

 Receipt for applicant with barcode

 What information will be written on receipt?

4.2 Inspecting Overall Functionality

Inspection of the requirements that apply on system

as a whole can be dealt at this stage, e.g., non-functional

requirements and other features like con-currency and

priority. Inspection of the properties that applies to

system as a whole helps discovering the defects like

improper synchronization, deadlock, starvation, lost

signals, and race conditions etc.

To check the application of combined inspection, let

us use an example of an agent based distributed

processing which requires the interaction of multiple

processes at a time. In this case source platform creates

two agents for service and data discovery, respectively.

These agents are transmitted on the network

simultaneously. We assume that these agents have

already been inspected separately.

Possible questions at this moment could be:

 What should be the behavior of system when both

Agents reach source at same time?

 What if one of them trapped?

Figure 10. Inspection of overall system.

Complete Applicant

Details

Applicant details with

Bar code

Check application for

grant
Problems in Application

Application is valid

F2

I1 F1 O1

O2
Verified Application Date & Receipt

F3 (verification date &

Prepare receipt)

O3 (Receipt)

Data and Services

info update

Verifying

Request verified

Creating Agents

Data InfoService Info

Transmitting

With Detail

Transmitting

With Detail

Agent

with

Detail

Agent with

Detail

Searching &

collecting

Data

Searching &

Recording

Services

Agent with DataAgent with Services

The Nucleus 51, No. 2 (2014)

288 M. Javed et al.

4.2.1 Analysis of System

System’s functionality inspected by Petri net can be

analyzed and audited by mathematical properties i.e.

reach-ability, liveliness etc. We will consider both in

our approach. This property tells the sequence of

transitions on given marking in Petri net. Having a

sequence means that the desired state is reachable from

the current state. In inspection audit and analysis this

reachability can help us to find whether this module or

component can perform all tasks without any defect on

the given input or not. In the following Figure 11, we

show the reachability graph for the analysis of the agent

based module inspected and shown above in Figure 10.

While doing the analysis we use vector = (Data and

Services info update, Request verified, Data

Information, Service Information, Agent with Detail,

Agent with data, Agent service).

We present the analysis at five different stages. On

each stage, 1 and 0 represent the existence and absence

of token in the corresponding vector attribute,

respectively. The analysis data captured in Figure 11 is

explained as:

Stage 1 Initially, there is a token in Data and Ser-

vices information update,

Stage 2 After verification, token reaches to the next

place, i.e., request verified,

Stage 3 When an agent is created then token is placed

to both data information and service

information places.

Stage 4 When an agent is transmitted with detail then

token passes to agent with detail position,

Stage 5 After searching, token is moved to agent with

data and agent service positions.

This analysis verifies the inspection process; it is

reachable from the place Data and Services Information

Update to the Software Agents with Data and Services.

5. Conclusions and Future Work

This paper presents the first step towards Petri net

based inspection of software systems. The graphical

models used in the paper are also supported by their

corresponding mathematical formulas. The proposed

approach is equally important to discover defects in the

requirements separately and on the system requirements

that can be implemented on as a whole. To the best of

our knowledge, this is the first attempt to provide formal

semantics of inspecting concurrent processes in

software systems. In future, we will focus on the

automation of our approach and will try to use extended

case studies. There are some simulation and analysis

tools like ALPHA/Sim, AlPiNA, ARP, Artifex,

CoopnBuilder, COSABPM, CPN-AMI, CPN Tools,

ePNK [18] available for Petri nets simulation, we will

also see how our approach of inspection can benefit

from those tools.

Figure 11. The analysis of system.

References

[1] M. E. Eagan, Advances in Software Inspections,

IEEE Transactions on Software Engineering 12,

No. 7 (1986) 744.

[2] T. D. Crossman, Some Experiences in the Use of

Inspection Teams in Application Development, In

Application Development Symposium, Monterey,

CA (1979).

[3] R. A. Radice, Software Inspections, Methods &

Tools. 10, (2002) 7–20, http://www.methods

andtools.com/PDF/dmt0202.pdf.

[4] Jones, Estimating Software Costs,Tata McGraw-

Hill Education (India), 2
nd

Edition (2007), http://

books.google.co.uk/books?id= pdcsm KljT9QC.

[5] C. Jones and O. Bonsignour, The Economics of

Software Quality. Pearson Education (2011).

[6] D. L. Parnas and M. Lawford, IEEE Transactions

on Software Engineering 29, No. 8 (2003) 674.

[7] C. A. Petri and W. Reisig, Petri Net, Scholarpedia,

3, (2008) 4: pp.7–20, http://www.methodsand

tools.com/PDF/dmt0202.pdf.

(1,0,0,0,0,0,0)

(0,1,0,0,0,0,0)

Verifying

(0,0,1,1,0,0,0)

Creating Agent

(0,0,0,0,1,0,0)

Transmitting with details

(0,0,0,0,0,1,1)

Searching for Data and

Services

The Nucleus 51, No. 2 (2014)

Towards formalization of inspection using petrinets 289

[8] J. Desel and G. Juhás, What is a Petri Net?”

Informal Answers for the Informed Reader, In

Unifying Petri Nets, Springer-Verlag Berlin

Heidelberg (2001) pp. 1–25.

[9] C. Cassandras and S. Lafortune, Introduction to

Discrete Event Systems, SpringerLink

Engineering, Springer (2007).

[10] U. Farooq, C. Lam and H. Li, Towards Automated

Test Sequence Generation, In 19th Australian

Conference on Software Engineering, (2008) pp.

441 –450.

[11] D. Y. Chao, Journal of Information Science and

Engineering 25, No. 6 (2009) 1963.

[12] W. M. P. van der Aalst, The Journal of Circuits,

Systems and Computers 8, No. 1 (1998) 21.

[13] K. Grigorova, Process Modeling using Petri Nets,

In International Conference on Computer Systems

and Technologies (2003).

[14] K. Barkaoui and J.-F. Pradat-Peyre, Verification in

Concurrent Programming with Petri Nets

Structural Techniques, In The 3rd IEEE

International Symposium on High-Assurance

Systems Engineering. Washington, DC (USA)

IEEE Computer Society (1998) pp. 124–133.

[15] D.A. McMeekin, A Software Inspection

Methodology for Cognitive Improvement in

Software Engineering. Ph.D Thesis, Digital

Ecosystems and Business Intelligence Institute,

Curtin University of Technology, Australia

(2010).

[16] R.O. Oladele, Reading Techniques for Software

Inspection: Review and Analysis. Technical

Report. Department of Computer Science,

University of Ilorin, Ilorin, Nigeria (2010).

[17] Software Requirements Specification (SRS)

Document: Workflow Monitoring, Social Security

SRS document of south African Social Security

Agency. Developed for Social Development

Eastern Cape Govt. Online at: http://www.sassa.

gov.za/Portals/1/Documents/7f4f791d-a512-4abc-

99ff-887586ff431a.pdf, (2005).

[18] A. Comprehensive Database of Petri Nets Tools,

http://www.informatik.uni-hamburg.de/TGI/ Petri

nets/tools/db.html (February 2014).

http://www.sassa/
http://www.informatik.uni-hamburg.de/TGI/%20Petri%20nets/tools/db.html
http://www.informatik.uni-hamburg.de/TGI/%20Petri%20nets/tools/db.html

