
The Nucleus 51, No. 1 (2014) 93-107

FBOS: Frequency based optimization strategy for thread pool system 93

Paki stan

The Nucleus

The Nucleus
A Quarterly Scientific Journal of Pakistan

Atomic Energy Commission

N C LE AM , I SSN 0 02 9- 5 69 8

FBOS: FREQUENCY BASED OPTIMIZATION STRATEGY

FOR THREAD POOL SYSTEM

*F. BAHADUR, M. NAEEM, M. JAVED and A. WAHAB
1

Department of Information Technology, Hazara University, Mansehra, Pakistan

1
Department of Mathematics, Hazara University Mansehra, Pakistan

(Received November 04, 2013 and accepted in revised form January 15, 2014)

Competitive multithreading models for constructing server side applications are thread-per-request and thread pool. Thread pool
architecture is more efficient because of its pre-spawning and recycling a pool of threads. But tuning the thread pool system at the
optimal level and dynamically changing its size is still a challenging task. This paper presents a Thread Pool System which is

equipped with a dynamic optimization strategy named Frequency Based Optimization Strategy (FBOS) that reacts on the basis of
client’s request frequencies. In this paper we also presented a comparison between the two best pool techniques and FBOS strategy
with the help of a Request Simulator and the results of simulation have proved that FBOS is more responsive and efficient than
other strategies.

Keywords : Thread, Multithreading, Frequency based optimization startegy, Thread pool, Inter-process communication, Thread-
per-request, Pre-spawning.

1 Introduction

Concurrency is desirable in server side

programming, and two basic approaches to develop

concurrent programs are single-threaded approach and

Multithreading approach. The former one is heavy

weight form of concurrency as every process has its

own code segment, data segment, stack, resources (files)

and registers, that’s why process creation for every new

request is very costly and since each process has its own

address space, the communication between processes is

difficult and involves explicit Inter-Process

Communicat ions (IPC) mechanism. The second

approach is encouraged because of its light weight

nature. If a server is designed by this approach then a

single process within a server will spawn a new thread

to handle new request arrived at the server and all the

threads will share the resources of the process with the

constraint that each thread will have its own stack and

register set and since all the threads share the address

space of a single process so they can easily

communicate d irectly with each other [1].

1.1 Multithreading Architectures

Multithreading is more desirable form of

concurrency model than process due to a number of

reasons. Firstly, light weight nature (easy to create and

maintain threads). For example, in Solaris 2 creating a

thread is 30 times faster than creating a process and

context switching of threads is five t imes faster than

process context switching [1]. Secondly, the architecture

used to implement multithreading can significantly

affect the performance of server. Two basic

architectures to implement multithreading are thread-

per-request and thread pool [2]. Thread-per-request

architecture creates a new thread for every request

arrived at the server. Both operations creation and

destruction after finishing the task take time alongwith

extra resources utilization, when user request volume is

high. In Windows NT and Solaris operating systems,

creation of a single thread involves allocation of one

megabyte virtual memory for thread stack and this

operation will obviously take time, so high request rate

will result in frequent memory allocation and de-

allocation and that will ult imately result in performance

bottleneck [3]. Thread-per-request architecture also

increases response time as a thread must be created first

before servicing the request which involves thread

creation time overhead. Thread pool model on the other

hand avoids these overheads by pre-spawning a reserve

number of threads at system start-up that are wait ing in

the pool to service incoming requests. On each request a

free thread allocated and deallocated after finishing job

and returned back to the pool. So, thre is no overhead of

thread creation and delation. As a result thread pool

architecture is more efficient than thread per-request [4].

1.2. Thread Pool Tuning

Due to the run-time overheads of thread-per-request

architecture, large number of server applications

including Web servers, mail servers, file servers,

database servers, and distributed object computing

(DOC) infrastructures also known as distributed object

 Corresponding author : msosfaisal@yahoo.com

mailto:msosfaisal@yahoo.com

The Nucleus 51, No. 1 (2014)

94 F. Bahadur et al.

computing middleware are build around thread pool

architecture [2] but the difficulty with this approach is

to point out those factors on the basis of which the pool

can be dynamically optimized and we can set the size of

pool at an ideal level so that the pool can give high

performance and improve Quality of Serv ice. We are

going to present such a technique called Frequency

Based Optimization Strategy (FBOS).

The rest of the paper is structured as follows:

Section 2 present a brief survey on existing Thread

Pooling strategies and selected two strategies for

analysis purposes, whereas Section 3 contains the

contribution of this paper. In section 4 we have provided

the anlysis of our work, whilechers the Section 5

concludes and gives a glimpse of future work.

2. Related Work

This section discusses the prior work done in

dynamic management of thread pool systems.

Following is a brief survey of thread pool systems used

by popular server applicat ions.

2.1 Hierarchical Thread Pool for DSM

It was designed to make use of non blocking

queues to enhance the performance of Distributed

Shared Memory (DSM) Programming. In

multithreaded programming the traditional approach to

access a shared resource is to make use of locks to

synchronize access to the shared resource. Each thread,

when need shared recource, first acquires a lock on

it but if that is alaredy locked then new thread has

to wait and the result is performance degradation.

The notion of a Non-Blocking Queue guarantees

that the threads competing for a shared resource

will never block. This system was designed to

actually increase the efficiency when the threads

executes in a DSM environment. The system

fetches the information of application threads and

allots them to certain processors with fewer loads

for their execution. The various incoming

application threads are first placed in a Non-

Blocking Queue. These threads are sorted priority

wised by Hierarchical Thread Pool Executor

(thread with highest priorty at the head and with

lowest at the tail) [5].

2.2 Dynamic Requests Scheduling Model in Multi-

core Web Server

It is a dynamic requests scheduling model for those

web servers that are running on mult i-core CPU. By

single thread pool system, optimum performance cannot

be gained on multi-core CPU. If threads running on

different cores have shared data then OS has to

continuously transmit their shared data between their

private L1 caches that results in ping pong effect which

causes performance degradation even if the system is

equipped with the thread pool sys tems. First-come first-

served (FCFS) based thread pool system does not

distribute time, while allocated to dynamic request (each

dynamic request has different service time). Hence, this

technique does not use FCFS, rather scheduling model

does not use FCFS queue but it schedules the incoming

requests based on weight-fair-queuing (WFQ) and

solves the ping pong effect using hard affinity in OS. In

WFQ approach there are more than one request queues

having particular priority that will store a particular

class of request i.e request type, request service time,

and URL of request. Processing time allocated on the

basis of priorty and weight of the queue. Moreover,

each request queue has a thread pool. Ping pong effect

is removed by allocating same core to those threads that

are sharing the data and this is done by hard affinity

method in OS. This model also improved the

performance of handling dynamic requests [6].

2.3 HDTP-QS Thread Pool

It is Heuristic and Dynamic Thread Pooling based

on Queuing System. HDTP-QS dynamically optimize

the size of thread pool by heuristic factors (e.g. average

number of requests and average response time). The

strategy makes use of two kinds of pools called basic

and extended thread pool. Master thread is responsible

to pick a particular thread from the pools to execute user

request. Master thread always refers to the basic thread

pool to execute a request and when all the threads inside

basic thread are busy it will then contact the extended

thread to execute new request meanwhile the basic

thread pool is expanded by one thread in the

background, extended pool is expanded by one thread

only when all the threads inside extended pool are busy.

The strategy suffers from overhead of managing two

different kinds of pools and their dynamic tuning at the

same time [7].

2.4 A Rendering System based on Thread Pool

It is thread pool based rendering process of game

engines. Game engine designs are evolving with respect

to the evolution of hardware. Central p rocessing unit

(CPU) manufactures are evolving the hardware to multi-

core solutions. This technique is to attain maximum

potential of hardware by the game engine designer. This

rendering system distributes its tasks among different

cores of a multi-core processor. The former game

engines were using a single thread to execute the draw

calls to the graphic card that cannot fully ut ilize the

power of multi-core processors, but the rendering

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 95

system architecture uses a thread pool system in which

objects to be rendered are placed in a request queue and

threads inside the pool will pick up an object, render it

and go to the pool again for the next assignment. The

thread pool system in this architecture is static. At the

system start up the treads initialized equal to the number

of cores in CPU [8].

2.5 Thread Pool for Multi-Core Media Processor

By this scheme, scheduler in mult i-core p rocessor

based application is responsible to assign the threads to

different cores in appropriate order so that an operation

cannot be affected, so the thread scheduler of proposed

scheme is responsible for performance scalability. To

achieve this goal the scheduler aims at reduction of

scheduling overhead for better efficiency. In

multithreaded applications that uses producer/consumer

threads the suspension and resumption of threads is

common to control the synchronization of threads that

utilizes share data. This suspension and resumption of

threads involves context switching overhead. This

scheme aims at removing this overhead of context

switching by adopting a policy that it never suspends a

thread and that the scheme starts a thread only when all

the data belongs to a thread are available. The thread

scheduler in this scheme consists of three components:

the dependency controller, the thread pool and the

thread dispatcher. Each core in the multi-core p rocessor

is loaded with the thread dispatcher which is responsible

to load a ready thread from the pool to the

corresponding core. An application that needs to make

use of a consumer thread will not start the consumer but

first it will reg ister the consumer with the dependency

controller alongwith the data needed by the consumer.

Every time the producer thread sends the consumer’s

data in a particular buffer it will also send a message to

dependency controller about the transfer of data and the

dependency controller is responsible to track the amount

of data availability for consumer and when all the data

is available it will make the corresponding consumer

thread ready and transfers it to the thread pool. So the

thread pool in this scheme contains only ready thread.

The thread pool is always monitored by thread

dispatchers that run on every core [9].

2.6 For Authorization of Credit Card System

It is a framework and prototype of credit card

authorization system that makes use of two thread pool

systems that are static but use a divide and conquers

approach to perform card validation process. The

proposed system aims at making the authorization

process fast and reliable. The card validation process

consists of two steps namely card restriction validation

and online fraud validation. In the past the whole card

validation process was considered to be a single unit as

a result server’s performace degraded. In this paper, the

card validation process is handled by two thread pool

systems concurrently, the worker thread pool system

will perform card restriction validation and the child

thread pool will perform online fraud validation. The

worker thread pool system consists of a request queue

and a pool of worker threads and the child thread pool

system consists of a request queue and a pool of child

threads. Each new request enters from the payment

gateway will be put in the request queue of worker

thread pool system. The worker thread will only

perform card restrict ion validation whereas the online

fraud validation is handed over to child thread pool

system by worker thread. Since the online fraud

validation process consists of several cryptographic

operations so each operation is inserted as a request by

the worker thread inside the request queue of child

thread pool system and the child threads will grab each

request to perform a particu lar cryptographic operation.

All the child threads will be running in parallel with the

worker thread. When the worker thread finishes the card

restriction validation it will wait for the completion

signal from the child’s threads that are performing fraud

validation [10].

2.7 Prediction Scheme for Thread Pool

By this technique it can be predict required number

of threads in advance using exponential average scheme

and the predicted number of threads are created by

watcher thread in advance to decrease response time fo r

the clients. A record being maintained for current

number of thread in the pool at regular intervals and

based on these recorder patterns of threads, it predicts

the required number of threads in advance that can be

used in the future and add the required threads in the

pool in advance. But the scheme cannot predict the

optimal size of thread pool when the request patterns are

irregular continuously for long period of t ime [11].

2.8 Heuristic Thread Pool

It is heuristic algorithm based technique that

dynamically determines the optimal thread pool size of

a thread pool system based on AIT(average job idle

time) in the request queue and the experiments are

performed using different init ial pool size to verify that

the strategy can respond at any initial pool size. The

performance metrics used in this paper for dynamic

optimization are response time and id le time of requests.

An algorithm presented in this paper for dynamic

optimization, that is executed after completion of five

tasks and the algorithm computes AIT of idle requests

and compare it with the previous AIT and if the

modulus of percentage of difference is greater than 1%

than the optimization of the pool is performed and the

The Nucleus 51, No. 1 (2014)

96 F. Bahadur et al.

pool size is increased by a fixed number called stride

(value=2) which is constant [12].

2.9 Watermark Thread Pool

It is a dynamic thread pooling mechanis m used in

middle ware servers [17] and it is also a standard

strategy adopted by Java language in its

ThreadPoolExecutor class [18]. Watermark Thread pool

initially have static threads called low watermark that

can dynamically grow up to a maximum value called

high watermark and these watermark values are

specified by the server developer. When a server starts it

will pre-allocate in itial number of threads in the pool

specified by the server developer and when all the

threads are busy at new request arrivals and the size o f

request queue becomes greater than the s ize of thread

pool than the server will g row the thread pool by

creating a new thread and when threads have been

spawned gradually up to high watermark then no more

threads will be spawned and new requests are then

queued in requests queue until a thread is available [13,

17].

2.10 Dynamic Thread Pool by Ling

It is a mathemat ical model to determine an optimal

pool size for thread pool system in which the size is

predicted on- the- fly by a formula. This thread pool

system does not specify an initial and maximum number

of threads and the formula used in the strategy can grow

the pool at any level. Thread creation overhead (C1) and

thread maintenance overhead (C2) are used as a metric

for dynamic tuning of thread pool and probability

distribution of these overheads is used to calculate an

optimal size of the pool. This paper contributes to

determine a significant relationship between pool size,

system load and associated overheads but the formula

used in the paper can’t model the actual performance of

the thread pool system because the strategy suffers from

overhead of creating additional threads whenever

incoming requests exceeds the thread pool size and the

strategy cannot detect and overcome this problem [14].

2.11 Static Thread Pool by Schmidt

Schmidt evaluated different ORB multithreading

models that are used by a specific CORBA

implementations and he presented a new thread pool

model which is different from Chang’s thread pool

architecture in such a way that an I/O thread first put

each incoming request at the tail of request queue and a

worker thread from the pool dequeues the request from

the head of queue. But unfortunately this model suffered

from context switching and synchronization overheads

at request queue level as no dynamic optimization

strategy of threads is adopted that can decrease the

burden of request handling. In Chang’s thread pool

model a request arrived at the server may be executed

directly by an available thread in the pool without

putting the request in the request queue first that

decreases the client’s response time but in Schmidt’s

thread pool model placing client’s requests first in the

ready queue is mandatory that makes this model less

responsive as compared to Chang’s model. Thread pool

architectures of Chang and Schmidt were s tatic models

[15].

2.12 Static Thread Pool by Chang

It is a design of a multithreaded Object Request

Broker (ORB) that follows CORBA2.0 specification

and ORB is based on a thread pool to service incoming

requests. In the past, different Object models have been

proposed to develop distributed applications. ORB is a

main facilitator in CORBA that enable communication

between distributed objects on the network. In the initial

specifications of CORBA the ORB was not using thread

pool architecture. At the ORB in itializat ion, daemon

creates a static pool of threads with reserve size which is

absolute and each incoming request to the ORB by a

client is received by Daemon thread that hand over it to

an idle thread in the pool and when the number of

requests exceed the number of threads in the pool

then requests are placed in the request queue until a

thread becomes available and no more threads are

spawned. [16].

2.13 Drawbacks of Existing Systems

1. Most of the thread pool systems discussed above

are platform dependent, e.g. [5] is designed to

actually increase the efficiency when the threads

executes in a Distributed Shared Memory (DSM)

environment, while [6, 8, 9] proposed thread pool

systems for only mult i-core systems.

2. In reference [7, 10] there are two thread pools to

handle multip le clients but these strategies suffers

from overhead of managing two different kinds of

pools at the same time.

3. The prediction based scheme [11] cannot predict

the optimal size of thread pool when the request

patterns are irregular continuously for long period

of time.

4. The thread pool architectures presented by [15, 16]
are static, having no dynamic optimization scheme.

5. In reference [12, 13] dynamic optimization is
performed by a constant value.

6. The Watermark thread pool architecture [13] and

Heuristic thread pool model [12] are better than

other approaches as these approaches are platform

independent and light weight, so the proposed

FBOS strategy is analysed against these two
approaches.

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 97

2.14 FBOS’s Target Operating Environments

Any server side infrastructure that is constrained by

thread pool to optimize server’s performance may be

equipped with FBOS strategy. Thread pools are using in

many server side applications including web and

application servers [20-25] File servers, distributed

object computing (DOC) in frastructures [26-27]. All

these infrastructures receive requests from clients,

dispatch them to threads to run the code that

corresponds to the request types, and send the calculated

data back to the clients. But these infrastructures expand

the pool only when all the threads are busy at new

request arrivals and the size of request queue becomes

greater than the size of thread pool and when threads

have been spawned gradually up to a restricted

maximum size then no more threads will be spawned

and new requests have to do wait in the request queue

until a thread is available. These infrastructures do not

expand pool size by request frequency. FBOS can

greatly improves the performance of these

infrastructures because FBOS performs dynamic

optimization of the thread pool when it finds that the

turnaround time of jobs involves wait ing time and it

then reacts by increasing the pool size according to

current request frequency and then recycles the threads

for incoming requests efficiently and also FBOS does

not restrict the pool size to a maximum level.

3. Frequency Based Optimization Strategy (FBOS)

This section discusses the detailed design and

implementation of proposed thread pool system.

3.1 System Design

This section will d iscuss the object oriented design

of proposed optimized thread pool system which is

based on certain assumptions that may be relaxed in the

future. Following are the assumptions taken for thread

pool system in this thesis.

3.1.1. Assumptions

1. Thread pool system considers all of its clients to be of
the same priority.

2. The proposed dynamic optimized thread pool system
is build for I/O intensive applications.

3.1.2. Thread Pool System Architecture

This section presents the design of thread pool

system which is organized by collection of classes.

Figure 3.1 presents a general organizat ion of thread pool

system. The classes that are participating in the thread

pool system architecture are d iscussed below.

Thread Pool System: The overall system of thread pool

is represented by an object of this class. It represents the

whole system and it would instantiate all the necessary

components of system. At system startup this class will

create JobInQueue object that will store the incoming

client’s requests and JobOutQueue object that will store

the completed jobs for performance measurement

purpose and WorkerPool object which is a pool of

threads that will init ially create two threads.

Job In Queue: This is a dynamic queue that can hold

any number of client’s Requests. The requests are

inserted form one end and taken for execution from

other end, it is FIFO data structure.

Job Out Queue: This is a dynamic queue that will store

those jobs which have been completed. These

completed jobs are then extracted from this queue by

TATCalcu lator (Turnaround Time Calculator) fo r

performance measurement. The jobs are inserted form

one end and extracted from other end, it is s FIFO data

structure.

Figure 3.1. Thread pool system organization.

Worker Pool / Thread Pool: Th is is a pool of Worker

Threads that will service user’s requests. This pool will

grow and shrink dynamically by FBOS strategy.

Worker Thread: The object of this class represents a

thread resides in Worker Pool which will execute the

jobs arrived in Job In Queue. Worker Thread will be in

one of two states busy and idle. In the idle state the

thread is waiting for the jobs to execute and in the busy

state the thread is actually executing the job.

Frequency Detector: This is a Timer class and an

object of this class is responsible to detect the rate of

incoming requests. This timer is invoked at uniform

time intervals (after every one second) and it detects the

frequency rate and stores the rate in FrequencyHolder

Object.

The Nucleus 51, No. 1 (2014)

98 F. Bahadur et al.

Frequency Holder: An object of this class will store

frequency rate. Frequency Detector’s object will update

this object after every one seconds.

Average Wait Detector: This is a Timer class and an

object of this class is responsible to periodically (after

every 200 millisecond) calculate the average wait times

of requests waiting inside Job In Queue for their turn of

execution.

Throughput Detector: This is a Timer class and an

object of this class is invoked at uniform time intervals

(after 1 second) to detect the total completed requests by

the thread pool system.

Job Completion Count: Object of this class will

maintain total number of jobs and phases that has been

executed. This is a synchronized object ie when a thread

will complete a job it will first obtain a lock on this

object so that no other thread can hold it and then its

values would be updated.

Performance Monitor: An object of this class is

responsible to maintain performance statistics of the

system. Thread Pool System will activate this object

after complet ing a phase (two jobs).

PerformanceMonitor will maintain history of all the

completed jobs and phases. It will monitor the system

performance at the end of each phase (completion of 2

jobs). TAT Calculator and Performance Checker are the

objects inside PerformanceMonitor used for dynamic

optimization.

TAT Calculator: An object of this class is called by

PerformanceMonitor to calculate the sum of turnaround

times of two jobs. The completed jobs are extracted

from JobOutQueue.

Performance Checker: An object of this class is called

by Performance Monitor at the end of each phase to

check the performance of most recent completed phase

and expand the WorkerPool if necessary.

Phase: An object of this class will represent a phase that

will store statistics of last two completed jobs.

Phase History: It will store objects of all the phases

that have been completed so far.

Job: An object of this class will represent a client’s

request. This object would be stamped by thread pool

system at different stages.

Job History: It will store objects of all the jobs that

have been completed so far.

I/O Bound Job: An object of this class represents an

I/O bond request; it will extend the Job object to absorb

its behaviors. IO boundness is simulated through sleep

(milliseconds) method.

Pool Reducer: This is a timer object and an object of

this class is embedded inside each WorkerThread to

calculate the idle t ime of WorkerThread. This timer

object is responsible to delete the corresponding thread

if the idle t ime of thread will become four seconds. In

this way this object is responsible to reduce the pool

size.

System Initialization:

At system startup the object of class Thread Pool

System will in itialize all its components. Worker Thread

and Job are the two most important objects of Thread

Pool System. Worker Pool and Job In Queue are two

data structures used to hold the references to Worker

Thread and Job entities. Worker Thread will be in any

one of two states called busy and idle. At system startup

there will be two objects of WorkerThread in the

Worker Pool in the waiting state. The dynamic

optimization strategy discussed later will increase and

decrease the number of Worker Thead in the Worker

Pool as needed. These two objects are wait ing for the

job arrival in the Job In Queue. Job In Queue is a

monitor object and only one Worker Thread can access

it at any time (called Active thread) and all other

Worker Thread in the Worker Pool must wait until the

active thread will release the lock from this

synchronized object. When a request will arrive, the

JobIn Queue will send a notificat ion signal to all the

wait ing threads in Worker Pool and they will start

competition to grab the job inside JobIn Queue but only

one will be the winner and the winner thread will start

the job execution and after job completion the thread

will place the job inside Job Out Queue for performance

measurement purposes, and then the thread will again

go into the waiting state inside WorkerPool to execute

other jobs.

3.1.3 Static Model of Thread Pool System

Figure 3.2 shows the relationship between the

classes of the system. Thread Pool System class will

create one instance of Job In Queue, Job Out Que,

Worker Pool, Performance Monitor, Throughput

Detector, Average Wait Detector and Frequency

Detector ie it has one to one association with other

classes. Worker Pool has many Worker Threads and

each Worker Thread has one Timer object to count the

idle t ime of corresponding thread and delete the

corresponding thread if Total id le t ime is equal to 4

seconds. JobIn Queue and Job Out Queue may have

many jobs. Frequency Detector has a single Frequency

Holder object. Performance Monitor has single objects

of Phase History, Job History, TAT Calc and

Performance Checker classes. Phase History has many

objects of Phase and Job History has many Objects of

Job.

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 99

3.2 System Implementation

In this section we will examine the thread pool

system implementation in detail, but first we need to

discuss those quantitative measures or performance

metrics which are the foundation of our dynamic tuning

strategy.

3.2.1 Performance Metrics

Main focus of our thread pool system is Quality of

service i.e. every client who is submitting job to the

system should get a fair and prompt response and this

goal requires the performance metrics of thread pool

system to be of low cost, easily measurable and

experimentally verifiable. In order to understand the

performance metrics we need to concentrate on Figure

3.3 which is basically a Time flow diagram of a user’s

request. The diagram depicts that the request passes

through different stages with the passage of time.

Turnaround time (TAT in milli seconds) is the

difference between job complet ion time and the time the

job was submitted to the system. TAT is a collection of

three components. The Response time (milli seconds) is

the time from the submission of request until the first

response from the server is produced; it is also called

Response Latency. The idle time (milli seconds) of a job

is actually a time the job has been waited in the ready

queue for its turn to execute, and the processing time is

the time spent for a job to be completed by the system.

Now following are the solid definitions of the

performance metrics used by our thread pool system.

3.2.1.1 Turn around Time of Jobs. (ms)

The interval from the time of submission of user

request to the time of request completion is called

turnaround time (TAT).

3.2.1.2 Wait Time/Idle Time of Jobs (ms)

Amount of time a job spent waiting in the ready

queue. FBOS will calculates the average wait times of

jobs in the queue by Average Wait Detector that is

invoked at regular time intervals (after 200 miliseconds)

and calculates the average waiting times of the waiting

requests by the following formulae [19].

Where Tcurrent is the current time and Tarrival (k) is

the time when k-th request arrived in the queue at the

server and n is the size of JobIn Queue.

In this thesis the FBOS dynamic tuning strategy will

minimize the wait time to gain maximum performance.

3.2.1.3. Throughput

Number of jobs completed in one second within

specified conditions. ThroughputDetector is a timer

class and an object of this class is invoked at uniform

time intervals (after 1 second) to detect the total

completed requests by the thread pool system.

Figure 3.2. Static model of proposed thread pool system.

Figure 3.3. Time flow of client’s request.

Less idle time, less turnaround time and high

throughput of system will ult imately result in maximum

performance and Quality of service (QOS) will be

achieved ultimately and all the users will get a fair

response. The thread pool system would try to reduce

the idle time of jobs as much as possible so that the idle

time moves to zero and the turnaround time of all the

requests only becomes equal to processing time of the

job. In th is case the system will provide maximum

throughput. When the system will be in the stable state

then the thread pool system will contain an ideal amount

of threads in the pool to service request and those

threads will process the request as soon as it would

arrive and no request will wait in the request queue, in

this case the turnaround time would automatically be

equal to the processing time of request and the system

will produce the maximum throughput and provide the

Quality of Service which is the main goal of underlying

thread pool system.

3.2.2. Dynamic Tuning Strategy

In this section, we will examine the dynamic tuning

strategy in detail. First, a general structure of the

The Nucleus 51, No. 1 (2014)

100 F. Bahadur et al.

strategy is presented and then we will separately discuss

each and every component of the strategy.

3.2.2.1 General Structure of the Strategy

The FBOS strategy is depicted in Figure 3.4 which

is responsible to improve system throughput and

decrease response time at any rate of incoming client’s

requests also known as request Frequency. The dynamic

tuning strategy will respond to two different types of

scenarios, called high frequency rate scenario and low

frequency rate scenario. System will respond to the

clients with fair and prompt response at both scenarios.

At high rate scenario the strategy is responsible to

dynamically grow the size of pool and take the pool size

at an ideal level, and at low rate scenario it can decrease

the pool size if necessary. Frequency detection process

is performed by a component called Frequency

Detector. At system startup the main components of

thread pool System will be initialized, and WorkerPool

will in itially contain only two Worker Thread objects

which are responsible to execute client’s job. Each job

entered in the system will be marked with timestamps at

different stages and the Turnaround time, wait time and

processing time of each and every job is calculated.

After complet ion of every two jobs (called a phase), the

performance monitoring component of the system will

be activated which will in turn run a thread named TAT

Calculator which will calcu late TTAT (Total Turn

Around Time in ms) and TTWOW (Total Turnaround

time With Out Wait in ms). TTAT is the sum of

Turnaround times of two jobs and TTWOW is sum of

turnaround times of two jobs without their wait t imes.

After calculating these variables , TAT Calculator will

initialize a Phase object and store TTAT and TTWOW

values of completed phase in the phase object and store

the phase object in Phase History component and then

PerformanceChecker thread would be activated which

will extract the current phase from the Phase History

and check the performance of the completed phase and

if each and every job got a prompt response and they

have not been waited in the ready queue then it means

that the system is in stable state. The system stability

means that there is enough number of WorkerThreads

inside Worker Pool at the current frequency rate and the

pool does not need to be optimized. If the Performance

Checker will observe that the system is not in stable

state (unstable mode) ie there are some jobs in the

completed phase which did not get a prompt response

and the jobs have been waited inside ready queue then

this situation means that the current size of Worker Pool

in not an ideal one and its size need to be increased, at

this stage the performance Checker will call the expand

Pool(Frequency Rate) function of Thread Pool System

which will in turn expand the Worker Pool size

according to the current frequency rate. The higher the

frequency rate the more grow will occur in the Worker

Pool. Each thread in the pool have a Timer object

which will count the amount of time the thread has been

waited in the idle state and did not execute any job.

When a thread will go into busy state and start

executing a job, its timer would be stopped and when

the thread will go into the idle state again, its timer

would be started again, and when the timer will count

the idle time of corresponding thread up-to four

seconds, it will immediately destroy its corresponding

thread and the size of the Worker Pool will be decreased

automatically. Following is a detailed description of

each component of dynamic tuning strategy.

Figure 3.4. FBOS dynamic tuning strategy.

3.2.2.2 Detecting Frequency Rate

Thread pool system can tackle two different types of

request frequency scenarios during run time, called high

frequency rate scenario and low frequency rate scenario

and the system will respond to clients with fair and

prompt response at both scenarios. At high rate scenario

the strategy is responsible to dynamically grow the size

of pool and take the pool size at ideal level, and at low

rate scenario it will decrease the pool size. The rate of

incoming requests is detected by a component of thread

pool system called Frequency Detector. The class

Thread Pool System maintains a variable named

frequency Count that is incremented every time when a

request arrives, the value of this variable is read

periodically (after every second) by Frequency Detector

in the run method, that first reads its value and then it

again sets this variable to zero so that the variable can

maintain the frequency of next execution times. Figure

3.5 is a class Diagram of Frequency Detector which is a

Timer object, and it would be uniformly activated after

every one second and detects the number of requests

that have been submitted by the request simulator in one

second. It will then store the frequency rate in a

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 101

synchronized object of class called Frequency Holder

which is a synchronized object and Frequency Detector

will update this object after every one second.

3.2.2.3 Job’s Time Stamping

A Job or a request is an important entity of thread

pool system submitted by the Request Simulator to our

thread pool system at a specific frequency. In the thread

pool system a job is represented by a class named Job.

The class diagram is shown in Figure 3.6 with its

attributes and some of its methods. The description of

each instance variable is given in Table 3.1.

Thread pool system needs to know different types of

time intervals (listed in Table 3.1) about a job and for

this purpose the thread pool system will use time

stamping. During run t ime the System will mark time

stamps on a job at different stages. When a job is

submitted to the thread pool system, it is marked by its

submission time with the first time stamp and the job is

entered into the ready queue (JobIn Queue) which

follows the FIFO policy. If the system is in stable state

then the job will be picked by an id le Worker Thread

immediately and its execution will be started otherwis e

the job will do wait in the queue for its turn of

execution. When the job is extracted by a Worker

Thread from ready queue for its execution, it is marked

by it’s dequeue time with second time stamp and then

its execution will be started. When the job is completed

it is again marked by its completion time with third time

stamp and then the job is inserted into another queue

(Job Out Queue) for performance analysis. At this stage

the job can be examined by the system about its timing

intervals. Following three important variables about

every job will be calculated by the system for

performance measurement.

Frequency Detector

fH : Frequency Holder

run 0

Figure 3.5. Class diagram of frequency detector.

Wait Time= deQueue Time – inQue Time (1)

Turn Around Time = complet ion Time –

 in Que Time (2)

Turn Around TimeWOW = turn Around Time –

 wait Time (3)

If the system is in stable state then the job’s wait

Time would be zero and the values of both equation 1

and equation 2 would be same, and if the system was in

unstable state then the job’s wait Time variable will be

greater than zero and value of turn Around Time would

greater then value of turn Around Time WOW.

Figure 3.6. Class diagram of job.

Table 3.1. Job’s attributes and description

Attribute Description

inQueTime
The time of job submitted to the
system.

deQueueTime
The time of extracting the job from
ready queue.

completionTime The time of job completion.

phaseNo Phase ID of a job.

jobNo Job ID.

waitT ime(ms)
The total idle time of a job:
deQueueTime - inQueTime

turnAroundTime(ms) completionTime - inQueTime

turnAroundTimeWO
W (ms)

turnAroundTime - waitTime

3.2.2.4 Phase (Cycle) Explaination

The thread pool system will monitor the system

performance for dynamic optimization concern at the

end of each cycle, which is defined as two completed

jobs in our system called a phase. A cycle or a phase

contains the detail of two completed jobs that have been

executed by the system. Thread Pool System will call

the performance monitoring component after

complet ion of a phase. A phase is represented by an

object of class Phase depicted in Figure 3.7. The

description of attributes of class Phase is given in Table

3.2. The detail of phases that have been executed so far

is stored in an object of class Phase History. Phase

object is instantiated by a thread called TAT Calculator

The Nucleus 51, No. 1 (2014)

102 F. Bahadur et al.

which is called by Performance Monitoring component.

A further detail of calculating TTAT and TTWOW is

discussed in the next section.

3.2.2.5. Performance Monitoring and Pool Expansion

The performance of the thread pool system is

examined and tuned by an object of class Performance

Monitor which would be activated after every phase

(two jobs). Performance Monitor will launch its two

helper threads parallel named TAT Calculator and

Performance Checker. Performance Checker thread

will join TAT Calculator which means that Performance

Checker will pause its execution until completion of

thread TAT Calculator. Both of these helper threads are

discussed below.

TAT Calculator

This thread is responsible to calculate the values of

those variables that will be later used by the

Performance Checker thread to expand the Worker

Pool. TAT Calculator is the first thread launched by

Performance Monitor which will perform two main

tasks. It will first extract top two completed jobs from

Job Out Queue, The second task performed by TAT

Calculator is to calculate TTAT, TTWOW discussed

below.

Figure 3.7. Class diagram of phase.

Table 3.2. Description of attributes of class phase

Attribute Description

ID Phase ID.

poolSize

Size of WorkerPool.

OR Total number of WorkerThread
that have been completed this phase.

TTAT(Total
TturnAroundTime ms)

Sum of turnAroundTime of two
jobs.

TotalWait ms Sum of wait t imes of two jobs.

TTWOW(Total

TturnAroundTime
Without wait ms)

Sum of turnAroundTimeWOW of
two jobs.

TTAT (Total Turn Around Time ms)

It is the sum of processing times and wait times of

two jobs in a phase. TTAT is initialized with sum of

turnaround Time of two jobs completed so far as

follows.

TTAT= turn Around Time1 + turn Around Time 2.(1)

Where turnAroundTime1 and turn Around Time 2 are

the turnaround times of two completed jobs.

TTWOW (Total Turnaround time Without

Wait ms)

TTWOW is the sum of processing times of two jobs

of a phase, i.e. it contains the sum of turnaround times

of two jobs excluding their wait t imes.

TTWOW= turn Around Time WOW 1+ turn Around
 Time WOW2 (2)

Where turn Around Time WOW1 and turn Around

Time WOW 2 are the turnaround times without waits of

two completed jobs that belong to the current phase.

PerformanceChecker

This thread is responsible to expand the pool size on

low performance. After completion of TAT Calculator

thread, the Performance Checker thread will start its

execution which is responsible to measure the

performance of thread pool system and expand the pool

according to request frequency, if necessary.

Performance Checker thread will ext ract the most recent

completed phase from the Phase History and check the

performance of the phase. The variables related to

performance measurement of thread pool system in the

phase have just been calculated by TAT Calculator and

now Performance Checker thread will ext ract the

current phase from the Phase History and check the

performance to make decisions of dynamic tuning of

thread pool. Performance Checker will compare TTAT

and TTWOW and if TTAT is greater than TTWOW the

Performance Checker will get the current frequency rate

from Frequency Holder object and call the expand Pool

(Frequency Rate) function of Thread Pool System that

will set the size of pool equal to the current request

frequency. The pseudo code of pool expansion

according to the request frequency is given below.

If (TTAT > TTWOW) then

{

frequency= Frequency Holder.get Frequency

create a thread and add to the pool until the size of the

pool equals to frequency

}

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 103

If the system will be in a stable mode then it means

that the WorkerPool will have an ideal number o f

Worker Threads so each job of phase will get a prompt

response and no one will spend an idle time so TTAT

and TTWOW values would be same and the pool will

not be expanded.

If the system will be in an unstable mode then some

of the jobs will spend time in ready queue in idle mode

and wait time of some of the jobs will be greater than

zero and TTAT value of phase must be greater than

TTWOW value. This situation means that the current

size of WorkerPool in not an ideal one and its size need

to be increased and the performance Checker will call

the expand Pool (Frequency Rate) function of Thread

Pool System which will in turn expand the WorkerPool

size according to the current Frequency Rate. At higher

frequency rate the pool expansion rate would be h igher

and vice versa.

3.2.2.6. Shrinking Pool Size

The dynamic tuning strategy will not only expand

the pool at ideal level but it will also decrease the size of

WorkerPool at low frequency rate scenario. From high

request frequency mode to low request frequency mode

the job arrival rate inside ready queue would be slow

and the Worker Threads that have been increased

previously on high frequency rate scenario will now

have less number of jobs to execute so only limited

number of Worker Threads would be in busy mode

executing client’s job and there would be some threads

remain id le most of the time. In this case the timer

objects inside idle threads will count the idle time and

when the idle time of thread will be equal to four

seconds then the timer will delete its corresponding

thread that would result in reduction of pool size. This

reduction may continue until the size of Worker Pool

reduces to two, i.e. there would be at least two Worker

Threads in the pool.

4. Analysis of FBOS

This section discusses the experimental environment

and analysis of thread pool system.

4.1. Request Simulator

In order to measure the performance of thread pool

system a Java based request simulator is constructed

that will behave as a multithreaded server to the thread

pool system. It will submit requests to the thread pool

system at random frequencies. The request is not a real

I/O request but just a simulat ion of I/O request by

sleeping for a specific interval of time defined as

intensity level. The intensity level is random for each

request from 500 milliseconds to 1500 milliseconds.

The general architecture of the Request simulator is

given in Figure 4.1 with the following three

components.

i) Job Creator: This component will create a set of five

hundred requests with random I/O intensities and then

create its two more clones so that same set of jobs can

be send to three strategies for experiment.

ii) Request Sender Component: This is a Timer object

that will send requests to the thread pool system at

random frequencies .

ii) GUI Component: This object is responsible to

display the performance statistics related to each request

and each phase that have been completed.

The Request simulator will show us the complete

informat ion of each job submitted to the system

including information of time stamps of the job and it

will show us the performance statistics of average waits,

throughput per second and the thread pool size at

different intervals.

4.2. Experimental Environment

For the experiments, the Request simulator and the

thread pool system are running on same machine. The

operating system is Microsoft Windows 7 and the

processor is Pentium IV 2.80 GH with 1MB L2 cache.

The physical RAM size is 1GB. Figure 4.2 is the

client’s request burst used for the experiments. The

simulation is performed for twenty seconds with

different frequencies as shown in the Figure 4.2. Same

client’s load is used for three strategies separately and

the data collected from simulat ions is plotted for

analysis discussed next.

4.3. Analysis and Results

This section presents a comparative analysis of

FBOS strategy with Heuristic and Waterfall strategy on

the basis of average waits of queued requests and

throughputs gained per second. The data collected from

experiments is presented in the form of tables and their

corresponding graphs are also presented as figures.

FBOS and Heuristic strategies are phase based

strategies in which the performance of system is

analyzed after completion of a phase and then, tuning is

performed if needed, whereas Waterfall is not a phase

based strategy it doesn’t analyze performance of system,

but it increases the pool size according to the amount of

requests ,when there is a low request arrival it acts as a

static thread pool but when the frequency increases and

there are too many requests in the queue and all of the

low watermark threads are busy ,then size of request

queue becomes greater than thread pool size it starts

increasing its pool size by one thread to execute the

wait ing requests and behaves like thread per request

model. The value of low watermark is set to two threads

The Nucleus 51, No. 1 (2014)

104 F. Bahadur et al.

for all experiments. The pool size of three strategies in

different execution times is presented in Table 4.1 and

corresponding data is plotted in Figure 4.3 which shows

that FBOS strategy keeps its pool size accord ing to the

client’s request frequency whereas other two strategies

keep no relation of pool size and request frequency and

this is the reason that FBOS outperforms other two

strategies. For example in Figure 4.2 the request

frequency is 18 in execution times of 2 to 5 seconds and

the pool size of FBOS in Figure 4.3 is also 18 in theses

execution times and when the request frequency

becomes 24 in execution t imes of 10 to 13 seconds the

pool size of FBOS also grows to 24.

Now we will discuss the throughput gain of three

strategies. The data of throughput gain from each

strategy is presented in Table 4.2 and the throughput

data is also plotted in form of graph in Figure 4.4. The

x-axis shows the execution times in seconds and y-axis

shows the number of requests that have been processed.

Figure 4.4 shows that FBOS strategy outperforms other

two strategies in terms of throughput per second.

Heuristic strategy produces less throughput than other

two strategies because of two reasons, first it performs

its optimizat ion after completion of five completed jobs

where as FBOS performs optimization after two jobs,

second it increases the pool size by a constant value i.e.

two threads whereas FBOS increases its pool size

according to the ongoing request frequency. For

example in Figure 4.3 when the execution times was

10 seconds the pool size was 18 but when the

frequency increased up to 24 requests per second in the

next time interval then FBOS found that TTAT became

greater than TTWOW than it created six more threads to

keep its pool size equals to request frequency i.e. 24.

Watermark is giving more throughput than FBOSS in

initial execution times as it grew its pool size to six very

early on initial client’s burst that can be seen in Figure

4.4, but when the client’s load is continuously

increasing the watermark strategy started behaving like

thread per request model and it faced thread creation

overhead that ultimately resulted in low throughput. The

smartness of FBOSS strategy is that whenever the

request frequency increases, TTAT obviously becomes

greater than TTWOW and FBOS immediately grows its

pool size and keep it equal to frequency and then

recycles its threads in the subsequent execution times

whereas Watermark faces thread per request creation

overhead whenever its queue size becomes greater than

its pool size i.e. fo r every new request it first creates a

thread because all other threads are busy and in this way

it gains less throughput. The comparison of average

waits of three strategies is presented in Table 4.3 and

the data of average waits is also plotted in form of graph

in Figure 4.5.

The x-axis shows the execution times in

milliseconds and y-axis shows the average waits in

milliseconds. FBOS strategy overall produces less

average waits than other two strategies. Heuristic is

producing higher average waits than other two strategies

because of its slow optimization process as discussed

before. Watermark is giving less average waits than

FBOS in the initial execution times as it grew its pool

size to six very early on initial client’s burst as shown in

Figure 4.3 while FBOS uses two initial threads but in

the execution times of 10 second and 18 second when

the client’s burst become 24 requests per second and 30

requests per second, the average wait times of

Watermark are h igher than FBOS because FBOS

strategy has kept the pool size equal to the request

frequency and recycling its threads efficiently and its

pool size is more than watermark strategy, whereas

watermark is facing thread creation overhead and its

pool size is smaller than pool size of FBOS and that’s

why average waits of queued requests in case of

Watermark strategy are higher than FBOS strategy.

The analysis results have been proved that FBOS is

more performance efficient than Watermark and

Heuristic strategies. FBOS produces less idle time fo r

the queued requests and produces higher throughput

than Watermark and Heuristic strategy.

Figure 4.1. General architecture of request simulator.

Figure 4.2. Client’s load on the server.

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 105

Table 4.1. Pool size comparison of three strategies

Execution

Time
(sec)

FBOS Heuristic Watermark

1 2 2 6

2 18 2 12

3 18 2 12

4 18 2 18

5 18 2 18

6 18 4 18

7 18 6 18

8 18 10 18

9 18 14 18

10 18 18 18

11 24 18 21

12 24 18 21

13 24 18 21

14 24 18 21

15 24 18 21

16 24 22 21

17 24 24 21

18 24 24 22

19 30 24 22

20 30 24 22

Figure 4.3. Comparison of pool size.

Figure 4.4 Comparison of throughput.

Table 4.2. Throughput comparison of three strategie

Execution

Time(sec)
FBOS Heuristic Watermark

1 2 2 6

2 4 4 20

3 24 7 36

4 47 10 56

5 72 13 78

6 94 18 92

7 108 27 112

8 129 40 130

9 150 60 140

10 161 85 161

11 185 110 186

12 209 134 210

13 244 160 236

14 253 180 253

15 272 205 272

16 289 240 287

17 300 270 300

18 327 305 326

19 358 335 352

Table 4.3. Average wait comparison of three strategies

Execution

Time(msec)
FBOS Heuristic Watermark

0 0 0 0

800 487 497 282

1600 669 679 63

2400 749.0909 1190.7894 360

3200 472.75 1383.415 141

4000 728.2632 1879 438

4800 56 2040.5555 0

5600 0 2150.75 0

6400 0 2553.9639 0

7200 0 2477.721 0

8000 0 2736.238 0

8800 0 2286.4578 0

9600 0 2327.0247 0

10400 209 1859.7561 141

11200 0 1452.0632 32

12000 0 1049 313

12800 0 1100 0

13600 0 1211 0

14400 0 945 0

15200 0 729 0

16000 0 602 0

16800 0 381 0

17600 0 249 0

18400 0 187 110

19200 0 67 407

Pool Size Comparison

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Execution Time(sec)

P
o

o
l

S
iz

e

FBOS
Heuristic
Watermark

Throughput Comparison

2

22
42

62

82
102

122
142

162

182
202

222

242
262

282
302

322

342

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Execution Time(sec)

T
h

ro
u

g
h

p
u

t

FBOS

Heuristic

Watermark

The Nucleus 51, No. 1 (2014)

106 F. Bahadur et al.

Figure 4.5. Comparison of average waits.

5. Conclusion and Future Work

The main contribution of this thesis is the

presentation of FBOS dynamic tuning strategy which is

based on set of quantitative measures that are easily

measurable and experimentally verifiable. FBOS

strategy is presented for those server side applications

that use thread pool architecture. The FBOS strategy is

implemented in JAVA and the strategy can dynamically

resize the thread pool on the basis of request frequency

and it lets the thread pool system running gracefully.

The quantitative measures of FBOS s trategy are

turnaround time of requests, idle time of requests and

the system throughout. FBOS performs dynamic

optimization of the thread pool when it finds that the

turnaround time of jobs involves wait ing time and it

then reacts by increasing the pool s ize according to

current request frequency and then recycles the threads

for incoming requests efficiently.

References

[1] A. Silberschatz, P. Galvin and G. Gane, Operating

System Concepts. 6
th

 Ed. John Wiley & Sons. (New

York, USA) (2003) pp. 180-187. ISBN:

0471694665

[2] M. Harkema, B. Gijsen, R. Vander and L.

Nieuwenhuis, Performance Comparison of

Middleware Threading Strategies , Proc. of Int.

Symp. Performance Evaluation of Computer and

Communicat ion Systems, Netherland (2004)

pp.727-732.

[3] Y. Ling, T. Mullen and X. Lin, ACM. SIGOPS

Operating System Review 34, No. 2 (2000) 42.

[4] J. Hu, I. Pyarali and D. Schmidt, Measuring the

Impact of Event Dispatching and Concurrency

Models on Web Server Performance Over High-

speed Networks. Global Telecommunications Conf.

IEEE. (Phoenix, AZ., USA) (1997)

pp. 1924–1931.

[5] S. Ramisetti and R. Wanker, Design of Hierarchical

Thread Pool Executor for DSM. Second Int. Conf.

on Intelligent Systems, Modelling and Simulation.

(Kuala Lumpur) (2011) pp.284-288.

[6] G. You and Y. Zhao, Dynamic Requests

Scheduling Model in Multi-core Web Server. Ninth

Int. Conf. on Grid and Cloud Computing. (Nanjing,

China) (2010) pp.201-206.

[7] C. Ning and P. Lin, A Dynamic Adjustment

Mechanism with Heuristic for Thread Pool in

Middleware. 3
rd

 Int. Joint Conf. on Computational

Science and Optimization. IEEE Computer Society.

(Washington, DC., USA) (2010) pp. 324-336.

[8] J. Lorenzon and E. Clua, A Novel Mult ithreaded

Rendering System based on a Deferred Approach.

Proc. of VIII Brazilian Symp. on Ga mes and

Dig ital Entertainment (Rio de Janeiro, Brazil)

(2009) pp. 168-174.

[9] T. Kodaka, S. Sasaki, T. Tokuyoshi and

R. Ohyama, Design and Implementation of

Scalable, Transparent Threads for Multi-Core

Media Processor. Proc. of the Conf. on Design,

Automation and Test in Europe. (Belgium) (2009)

pp. 1035-1039.

[10] M. Nasir, S. Hamid and H. Hassan, Thread-Level

Parallelis m & Shared-Memory Pool Techniques for

Authorizat ion of Credit Card System. International

Symp. on Communicat ions and Information

Technologies. (Lao, China) (2008) pp. 447-452.

[11] D. Kang, S. Han, S. Yoo and S. Park, Prediction

based Dynamic Thread Pool Scheme for Efficient

Resource Usage. Proc. of the IEEE 8
th

 Int. Conf. on

Computer and Informat ion Technology Workshop,

IEEE Computer Society. (Washington, DC., USA)

(2008) pp. 159-164.

[12] D. Xu and B. Bode, Performance Study and

Dynamic Optimizat ion Design for Thread Pool

System. Proc. of the Int. Conf. on Computing

Communicat ions and Control Technologies.

(Austin, Texas, USA) (2004) pp.167-174.

[13] D. Schmidt and F. Kuhns, IEEE Computer

Magazine, Special Issue on Object-Oriented Real-

time Computing 33, No. 6 (2000): 56-63.

[14] Y. Ling, Y, T. Mullen and X. Lin, Analysis of

Optimal Thread Pool Size. ACM. SIGOPS

Operating System Review. 34, No. 2 (2000)

42.

[15] D. Schmidt, Communication of the ACM. (New

York, USA) 41, No. 10 (1998) 54.

[16] S. Chang, J. Wang, M. Yuan and D. Liang. Design

and Implementation of Multi-Threaded Object

Request Broker. Parallel and Distributed Systems.

Average Waits Comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

0
80

0

16
00

24
00

32
00

40
00

48
00

56
00

64
00

72
00

80
00

88
00

96
00

10
40

0

11
20

0

12
00

0

12
80

0

13
60

0

14
40

0

15
20

0

16
00

0

16
80

0

17
60

0

18
40

0

19
20

0

Execution Time(msec)

A
v
e
r
a
g
e
 W

a
it

(
m

s
e
c
)

FBOS

Heuristic

Watermark

The Nucleus 51, No. 1 (2014)

FBOS: Frequency based optimization strategy for thread pool system 107

Int. Conf. on Parallel and Distributed Systems.

(Washington, DC., USA) (1998) pp. 740-747.

[17] Dynamic TAO Documentation, http://choices.

cs.uiuc.edu/2k/dynamicTAO/doc/ (May 2013).

[18] Java API Documentation, http://docs.oracle.

com/javase/7/docs/api/ (May 2013).

[19] T. Ogaswara. Dynamic thread Couint

Adoptation for Multiple Services in SMP

Environment, Int. Conf. on web services, IEEE

Computer Society (Tokyo, Japan) (2008) pp.

585–592.

[20] JBOSS AZ7.1 Documentation. https://docs.

jboss.org/author/display/AS71/Threads+subsystem+

configuration (May 2013).

[21] Apache Tomcat 6.0. The Executor (thread

pool), http://tomcat.apache.org/tomcat-6.0-

doc/config/executor.html (May 2013).

[22] Sun Java System Applicat ion Server 9.1

Admin istration Guide. Thread pools, http://docs.

oracle.com/cd/E19159-01/819-3671/ (May 2013).

[23] Oracle®Containers for J2EE Configuration and

Admin istration Guide 10g (10.1.3.1.0). Configuring

OC4J thread pools. http://docs.oracle.com

/html/B32204_05/oc4j.htm (May 2013).

[24] WebLogic Server®Performance and Tuning.

Tune pool sizes, http://docs.oracle.com/cd/

E11035_01/wls100/perform/ (May 2013).

[25] WebSphere®Application Server Network

Deployment, Version 6.1. Thread pool settings.

http://www-01.ibm.com/software/ webservers/

appserv/was/library/ (May 2013.)

[26] Object Management Group, CORBA

Messaging Specification. http://www.omg.

org/spec/ (May 2013).

[27] Object Management Group, Realtime CORBA

Joint Revised Submission http://www.cs.

wustl.edu/~schmidt/PDF/RT-ORB-std-new.pdf
(May 2013).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5962
http://tomcat.apache.org/tomcat-6.0-doc/config/executor.html
http://tomcat.apache.org/tomcat-6.0-doc/config/executor.html
http://docs.oracle.com/cd/%20E11035_01/wls100/perform/
http://docs.oracle.com/cd/%20E11035_01/wls100/perform/
http://docs.oracle.com/cd/%20E11035_01/wls100/perform/
http://www-01.ibm.com/software/%20webservers/%20appserv/was/library/
http://www-01.ibm.com/software/%20webservers/%20appserv/was/library/

