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Competitive multithreading models for constructing server side applications are thread-per-request and thread pool. Thread pool 
architecture is more efficient because of its pre-spawning and recycling a pool of threads. But tuning the thread pool system at the 
optimal level and dynamically changing its size is still a challenging task. This paper presents a Thread Pool System which is 

equipped with a dynamic optimization strategy named Frequency Based Optimization Strategy (FBOS) that reacts on the basis of 
client’s request frequencies. In this paper we also presented a comparison between the two best pool techniques and FBOS strategy 
with the help of a Request Simulator and the results of simulation have proved that FBOS is more responsive and efficient than 
other strategies. 
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1 Introduction 

Concurrency is desirable in server side 

programming, and two basic approaches to develop 

concurrent programs are single-threaded approach and 

Multithreading approach. The former one is heavy 

weight form of concurrency as every process has its 

own code segment, data segment, stack, resources (files) 

and registers, that’s why process creation for every new 

request is very costly and since each process has its own 

address space, the communication between processes is 

difficult and involves explicit Inter-Process 

Communicat ions (IPC) mechanism. The second 

approach is encouraged because of its light weight 

nature. If a server is designed by this approach then a 

single process within a server will spawn a new thread 

to handle new request arrived at the server and all the 

threads will share the resources of the process with the 

constraint that each thread will have its own stack and 

register set and since all the threads share the address 

space of a single process so they can easily 

communicate d irectly with each other [1].  

1.1 Multithreading Architectures 

Multithreading is more desirable form of 

concurrency model than process due to a number of 

reasons. Firstly, light weight nature (easy to create and 

maintain threads). For example, in Solaris 2 creating a 

thread is 30 times faster than creating a process and 

context switching of threads is five t imes faster than 

process context switching [1]. Secondly, the architecture 

used to implement multithreading can significantly 

affect the performance of server. Two basic 

architectures to implement multithreading are thread-

per-request and thread pool [2]. Thread-per-request 

architecture creates a new thread for every request 

arrived at the server. Both operations creation and 

destruction after finishing the task take time alongwith 

extra resources utilization, when user request volume is 

high. In Windows NT and Solaris operating systems, 

creation of a single thread involves allocation of one 

megabyte virtual memory for thread stack and this 

operation will obviously take time, so high request rate 

will result in frequent memory allocation and de-

allocation and that will ult imately result in performance 

bottleneck [3]. Thread-per-request architecture also 

increases response time as a thread must be created first 

before servicing the request which involves thread 

creation time overhead. Thread pool model on the other 

hand avoids these overheads by pre-spawning a reserve 

number of threads at system start-up that are wait ing in 

the pool to service incoming requests. On each request a 

free thread allocated and deallocated after finishing job 

and returned back to the pool. So, thre is no overhead of 

thread creation and delation. As a result thread pool 

architecture is more efficient than thread per-request [4].  

1.2. Thread Pool Tuning 

Due to the run-time overheads of thread-per-request 

architecture, large number of server applications 

including Web servers, mail servers, file servers, 

database servers, and  distributed object computing 

(DOC) infrastructures also known as distributed object 
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computing middleware are build  around thread pool 

architecture [2] but the difficulty with this approach is 

to point out those factors on the basis of which the pool 

can be dynamically optimized and we can set the size of 

pool at an ideal level so that the pool can give high 

performance and improve Quality of Serv ice. We are 

going to present such a technique called Frequency 

Based Optimization Strategy (FBOS).  

The rest of the paper is structured as follows: 

Section 2 present a brief survey on existing Thread 

Pooling strategies and selected two strategies for 

analysis purposes, whereas Section 3 contains the 

contribution of this paper. In section 4 we have provided 

the anlysis of our work, whilechers the Section 5 

concludes and gives a glimpse of future work. 

2. Related Work 

This section discusses the prior work done in 

dynamic management of thread pool systems. 

Following is a brief survey of thread pool systems used 

by popular server applicat ions. 

2.1 Hierarchical Thread Pool for DSM  

It was designed to make use of non blocking 

queues to enhance the performance of Distributed 

Shared Memory (DSM) Programming. In 

multithreaded programming the traditional approach to 

access a shared resource is to make use of locks to 

synchronize access to the shared resource. Each thread, 

when need shared recource, first acquires a lock on 

it but if that is alaredy locked then new thread has 

to wait and the result is performance degradation. 

The notion of a Non-Blocking Queue guarantees 

that the threads competing for a shared resource 

will never block. This system was designed to 

actually increase the efficiency when the threads 

executes in a DSM environment. The system 

fetches the information of application threads and 

allots them to certain processors with fewer loads 

for their execution. The various incoming 

application threads are first placed in a Non- 

Blocking Queue. These threads are sorted priority 

wised by Hierarchical Thread Pool Executor 

(thread with highest priorty at the head and with 

lowest at the tail) [5].  

2.2 Dynamic Requests Scheduling Model in Multi-

core Web Server 

It is a dynamic requests scheduling model for those 

web servers that are running on mult i-core CPU. By 

single thread pool system, optimum performance cannot 

be gained on multi-core CPU. If threads running on 

different cores have shared data then OS has to 

continuously transmit their shared data between their 

private L1 caches that results in ping pong effect which 

causes performance degradation even if the system is 

equipped with the thread pool sys tems. First-come first-

served (FCFS) based thread pool system does not 

distribute time, while allocated to dynamic request (each 

dynamic request has different service time). Hence, this 

technique does not use FCFS, rather scheduling model 

does not use FCFS queue but it schedules the incoming 

requests based on weight-fair-queuing (WFQ) and 

solves the ping pong effect using hard affinity in OS. In 

WFQ approach there are more than one request queues 

having particular priority that will store a particular 

class of request i.e request type, request service time, 

and URL of request. Processing time allocated on the 

basis of priorty and weight of the queue. Moreover, 

each request queue has a thread pool. Ping pong effect 

is removed by allocating same core to those threads that 

are sharing the data and this is done by hard affinity 

method in OS. This model also improved the 

performance of handling dynamic requests [6].  

2.3 HDTP-QS Thread Pool 

It is Heuristic and Dynamic Thread Pooling based 

on Queuing System. HDTP-QS dynamically optimize 

the size of thread pool by heuristic factors (e.g. average 

number of requests and average response time). The 

strategy makes use of two kinds of pools called basic 

and extended thread pool. Master thread is responsible 

to pick a particular thread from the pools to execute user 

request. Master thread always refers to the basic thread 

pool to execute a request and when all the threads inside 

basic thread are busy it will then contact the extended 

thread to execute new request meanwhile the basic 

thread pool is expanded by one thread in the 

background, extended pool is expanded by one thread 

only when all the threads inside extended pool are busy. 

The strategy suffers from overhead of managing two 

different kinds of pools and their dynamic tuning at the 

same time [7]. 

2.4 A Rendering System based on Thread Pool 

It is thread pool based rendering process of game 

engines. Game engine designs are evolving with respect 

to the evolution of hardware. Central p rocessing unit 

(CPU) manufactures are evolving the hardware to multi-

core solutions. This technique is to attain maximum 

potential of hardware by the game engine designer. This 

rendering system distributes its tasks among   different 

cores of a multi-core processor. The former game 

engines were using a single thread to execute the draw 

calls to the graphic card that cannot fully ut ilize the 

power of multi-core processors, but the rendering 
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system architecture uses a thread pool system in which 

objects to be rendered are placed in a request queue and 

threads inside the pool will pick up an object, render it 

and go to the pool again for the next assignment. The 

thread pool system in this architecture is static. At the 

system start up the treads initialized equal to the number 

of cores in CPU [8]. 

2.5 Thread Pool for Multi-Core Media Processor 

By this scheme, scheduler in mult i-core p rocessor 

based application is responsible to assign the threads to 

different cores in appropriate order so that an operation 

cannot be affected, so the thread scheduler of proposed 

scheme is responsible for performance scalability. To 

achieve this goal the scheduler aims at reduction of 

scheduling overhead for better efficiency. In 

multithreaded applications that uses producer/consumer 

threads the suspension and resumption of threads is 

common to control the synchronization of threads that 

utilizes share data. This suspension and resumption of 

threads involves context switching overhead. This 

scheme aims at removing this overhead of context 

switching by adopting a policy that it never suspends a 

thread and that the scheme starts a thread only when all 

the data belongs to a thread are available. The thread 

scheduler in this scheme consists of three components: 

the dependency controller, the thread pool and the 

thread dispatcher. Each core in the multi-core p rocessor 

is loaded with the thread dispatcher which is responsible 

to load a ready thread from the pool to the 

corresponding core. An application that needs to make 

use of a consumer thread will not start the consumer but 

first it will reg ister the consumer with the dependency 

controller alongwith the data needed by the consumer. 

Every time the producer thread sends the consumer’s 

data in a particular buffer it will also send a message to 

dependency controller about the transfer of data and the 

dependency controller is responsible to track the amount 

of data availability for consumer and when all the data 

is available it will make the corresponding consumer 

thread ready and transfers it to the thread pool. So the 

thread pool in this scheme contains only ready thread. 

The thread pool is always monitored by thread 

dispatchers that run on every core [9].  

2.6 For Authorization of Credit Card System 

It is a framework and prototype of credit card 

authorization system that makes use of two thread pool 

systems that are static but use a divide and conquers 

approach to perform card validation process. The 

proposed system aims at making the authorization 

process fast and reliable. The card validation process 

consists of two steps namely card restriction validation 

and online fraud validation. In the past the whole card 

validation process was considered to be a single unit as 

a result server’s performace degraded. In this paper, the 

card validation process is handled by two thread pool 

systems concurrently, the worker thread pool system 

will perform card restriction validation and the child 

thread pool will perform online fraud validation. The 

worker thread pool system consists of a request queue 

and a pool of worker threads and the child thread pool 

system consists of a request queue and a pool of child 

threads. Each new request enters from the payment 

gateway will be put in the request queue of worker 

thread pool system. The worker thread will only 

perform card restrict ion validation whereas the online 

fraud validation is handed over to child thread pool 

system by worker thread. Since the online fraud 

validation process consists of several cryptographic 

operations so each operation is inserted as a request by 

the worker thread inside the request queue of child 

thread pool system and the child threads will grab each 

request to perform a particu lar cryptographic operation. 

All the child threads will be running in parallel with the 

worker thread. When the worker thread finishes the card 

restriction validation it will wait for the completion 

signal from the child’s threads that are performing fraud 

validation [10].  

2.7 Prediction Scheme for Thread Pool 

By this technique it can be predict required number 

of threads in advance using exponential average scheme 

and the predicted number of threads are created by 

watcher thread in advance to decrease response time fo r 

the clients. A record being maintained for current 

number of thread in the pool at regular intervals and 

based on these recorder patterns of threads, it predicts 

the required number of threads in advance that can be 

used in the future and add the required threads in the 

pool in advance. But the scheme cannot predict the 

optimal size of thread pool when the request patterns are 

irregular continuously for long period of t ime [11].  

2.8 Heuristic Thread Pool 

It is heuristic algorithm based technique that 

dynamically determines the optimal thread pool size of 

a thread pool system based on AIT(average job idle 

time) in the request queue and the experiments are 

performed using different init ial pool size to verify that 

the strategy can respond at any initial pool size. The 

performance metrics used in this paper for dynamic 

optimization are response time and id le time of requests. 

An algorithm presented in this paper for dynamic 

optimization, that is executed after completion of five 

tasks and the algorithm computes AIT of idle requests 

and compare it with the previous AIT and if the 

modulus of percentage of difference is greater than 1% 

than the optimization of the pool is performed and the 
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pool size is increased by a fixed number called stride 

(value=2) which is constant [12].  

2.9 Watermark Thread Pool 

It is a dynamic thread pooling mechanis m used in 

middle ware servers [17] and it is also a standard 

strategy adopted by Java language in its 

ThreadPoolExecutor class [18]. Watermark Thread pool 

initially have static threads called low watermark that 

can dynamically grow up to a maximum value called 

high watermark and these watermark values are 

specified by the server developer. When a server starts it 

will pre-allocate in itial number of threads in the pool 

specified by the server developer and when all the 

threads are busy at new request arrivals and the size o f 

request queue becomes greater than the s ize of thread 

pool than the server will g row the thread pool by 

creating a new thread and when threads have been 

spawned gradually up to high watermark then no more 

threads will be spawned and new requests are then 

queued in requests queue until a thread is available [13, 

17]. 

2.10 Dynamic Thread Pool by Ling 

It is a mathemat ical model to determine an optimal 

pool size for thread pool system in which the size is 

predicted on- the- fly by a formula. This thread pool 

system does not specify an initial and maximum number 

of threads and the formula used in the strategy can grow 

the pool at any level. Thread creation overhead (C1) and 

thread maintenance overhead (C2) are used as a metric 

for dynamic tuning of thread pool and probability 

distribution of these overheads is used to calculate an 

optimal size of the pool. This paper contributes to 

determine a significant relationship between pool size, 

system load and associated overheads but the formula 

used in the paper can’t model the actual performance of 

the thread pool system because the strategy suffers from 

overhead of creating additional threads whenever 

incoming requests exceeds the thread pool size and the 

strategy cannot detect and overcome this problem [14].  

2.11 Static Thread Pool by Schmidt 

Schmidt evaluated different ORB multithreading 

models that are used by a specific CORBA 

implementations and he presented a new thread pool 

model which is different from Chang’s thread pool 

architecture in such a way that an I/O thread first put 

each incoming request at the tail of request queue and a 

worker thread from the pool dequeues the request from 

the head of queue. But unfortunately this model suffered 

from context switching and synchronization overheads 

at request queue level as no dynamic optimization 

strategy of threads is adopted that can decrease the 

burden of request handling. In Chang’s thread pool 

model a request arrived at the server may be executed 

directly by an available thread in the pool without 

putting the request in the request queue first that 

decreases the client’s response time but in Schmidt’s 

thread pool model placing client’s requests first in the 

ready queue is mandatory that makes this model less 

responsive as compared to Chang’s model. Thread pool 

architectures of Chang and Schmidt were s tatic models 

[15]. 

2.12 Static Thread Pool by Chang 

It is a design of a multithreaded Object Request 

Broker (ORB) that follows CORBA2.0 specification 

and ORB is based on a thread pool to service incoming 

requests. In the past, different Object models have been 

proposed to develop distributed applications.  ORB is a 

main facilitator in CORBA that enable communication 

between distributed objects on the network. In the initial 

specifications of CORBA the ORB was not using thread 

pool architecture. At the ORB in itializat ion, daemon 

creates a static pool of threads with reserve size which is 

absolute and each incoming request to the ORB by a 

client is received by Daemon thread that hand over it to 

an idle thread in the pool and when the number of 

requests exceed the number of threads in the pool 

then requests are placed in the request queue until a 

thread becomes available and no more threads are 

spawned. [16]. 

2.13 Drawbacks of Existing Systems 

1. Most of the thread pool systems discussed above 

are platform dependent, e.g. [5] is designed to 

actually increase the efficiency when the threads 

executes in a Distributed Shared Memory (DSM) 

environment, while [6, 8, 9] proposed thread pool 

systems for only mult i-core systems. 

2. In reference [7, 10] there are two thread pools to 

handle multip le clients but these strategies suffers 

from overhead of managing two different kinds of 

pools at the same time. 

3. The prediction based scheme [11] cannot predict 

the optimal size of thread pool when the request 

patterns are irregular continuously for long period 

of time. 

4. The thread pool architectures presented by [15, 16] 
are static, having no dynamic optimization scheme.  

5. In reference [12, 13] dynamic optimization is 
performed by a constant value. 

6. The Watermark thread pool architecture [13] and 

Heuristic thread pool model [12] are better than 

other approaches as these approaches are platform 

independent and light weight, so the proposed 

FBOS strategy is analysed against these two 
approaches. 
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2.14 FBOS’s Target Operating Environments 

Any server side infrastructure that is constrained by 

thread pool to optimize server’s performance may be 

equipped with FBOS strategy. Thread pools are using in 

many server side applications including web and 

application servers [20-25] File servers, distributed 

object computing (DOC) in frastructures [26-27]. All 

these infrastructures receive requests from clients, 

dispatch them to threads to run the code that 

corresponds to the request types, and send the calculated 

data back to the clients. But these infrastructures expand 

the pool only when all the threads are busy at new 

request arrivals and the size of request queue becomes 

greater than the size of thread pool and when threads 

have been spawned gradually up to a restricted 

maximum size then no more threads will be spawned 

and new requests have to do wait in the request queue 

until a thread is available. These infrastructures do not 

expand pool size by request frequency. FBOS can 

greatly improves the performance of these 

infrastructures because FBOS performs dynamic 

optimization of the thread pool when it finds that the 

turnaround time of jobs involves wait ing time and it 

then reacts by increasing the pool size according to 

current request frequency and then recycles the threads 

for incoming requests efficiently and also FBOS does 

not restrict the pool size to a maximum level.  

3. Frequency Based Optimization Strategy (FBOS) 

This section discusses the detailed design and 

implementation of proposed thread pool system.  

3.1 System Design 

This section will d iscuss the object oriented design 

of proposed optimized thread pool system which is 

based on certain assumptions that may be relaxed in the 

future. Following are the assumptions taken for thread 

pool system in this thesis. 

3.1.1. Assumptions 

1. Thread pool system considers all of its clients to be of 
the same priority. 

2. The proposed dynamic optimized thread pool system 
is build for I/O intensive applications. 

3.1.2. Thread Pool System Architecture 

This section presents the design of thread pool 

system which is organized by collection of classes. 

Figure 3.1 presents a general organizat ion of thread pool 

system. The classes that are participating in the thread 

pool system architecture are d iscussed below.  

Thread Pool System: The overall system of thread pool 

is represented by an object of this class. It represents the 

whole system and it would instantiate all the necessary 

components of system. At system startup this class will 

create JobInQueue object that will store the incoming 

client’s requests and JobOutQueue object that will store 

the completed jobs for performance measurement 

purpose and WorkerPool object which is a pool of 

threads that will init ially create two threads. 

Job In Queue: This is a dynamic queue that can hold 

any number of client’s Requests. The requests are 

inserted form one end and taken for execution from 

other end, it is FIFO data structure. 

Job Out Queue: This is a dynamic queue that will store 

those jobs which have been completed. These 

completed jobs are then extracted from this queue by 

TATCalcu lator (Turnaround Time Calculator) fo r 

performance measurement. The jobs are inserted form 

one end and extracted from other end, it is s FIFO data 

structure. 

 

Figure 3.1. Thread pool system organization. 

Worker Pool / Thread Pool:  Th is is a pool of Worker 

Threads that will service user’s requests. This pool will 

grow and shrink dynamically by FBOS strategy. 

Worker Thread:  The object of this class represents a 

thread resides in Worker Pool which will execute the 

jobs arrived in Job In Queue. Worker Thread will be in 

one of two states busy and idle. In the idle state the 

thread is waiting for the jobs to execute and in the busy 

state the thread is actually executing the job.  

Frequency Detector: This is a Timer class and an 

object of this class is responsible to detect the rate of 

incoming requests. This timer is invoked at uniform 

time intervals (after every one second) and it detects the 

frequency rate and stores the rate in FrequencyHolder 

Object. 
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Frequency Holder: An object of this class will store 

frequency rate. Frequency Detector’s object will update 

this object after every one seconds. 

Average Wait Detector: This is a Timer class and an 

object of this class is responsible to periodically (after 

every 200 millisecond) calculate the average wait times 

of requests waiting inside Job In Queue for their turn of 

execution.  

Throughput Detector: This is a Timer class and an 

object of this class is invoked at uniform time intervals 

(after 1 second) to detect the total completed requests by 

the thread pool system. 

Job Completion Count: Object of this class will 

maintain total number of jobs and phases that has been 

executed. This is a synchronized object ie when a thread 

will complete a job it will first obtain a lock on this 

object so that no other thread can hold it and then its 

values would be updated. 

Performance Monitor: An object of this class is 

responsible to maintain performance statistics of the 

system. Thread Pool System will activate this object 

after complet ing a phase (two jobs). 

PerformanceMonitor will maintain history of all the 

completed jobs and phases. It will monitor the system 

performance at the end of each phase (completion of 2 

jobs). TAT Calculator and Performance Checker are the 

objects inside PerformanceMonitor used for dynamic 

optimization. 

TAT Calculator:  An object of this class is called by 

PerformanceMonitor to calculate the sum of turnaround 

times of two jobs. The completed jobs are extracted 

from JobOutQueue. 

Performance Checker: An object of this class is called 

by Performance Monitor at the end of each phase to 

check the performance of most recent completed phase 

and expand the WorkerPool if necessary. 

Phase: An object of this class will represent a phase that 

will store statistics of last two completed jobs. 

Phase History: It will store objects of all the phases 

that have been completed so far.  

Job: An object of this class will represent a client’s 

request. This object would be stamped by thread pool 

system at different stages. 

Job History:  It will store objects of all the jobs that 

have been completed so far. 

I/O Bound Job: An object of this class represents an 

I/O bond request; it will extend the Job object to absorb 

its behaviors. IO boundness is simulated through sleep 

(milliseconds) method. 

Pool Reducer: This is a timer object and an object of 

this class is embedded inside each WorkerThread to 

calculate the idle t ime of WorkerThread. This timer 

object is responsible to delete the corresponding thread 

if the idle t ime of thread will become four seconds. In 

this way this object is responsible to reduce the pool 

size. 

System Initialization: 

At system startup the object of class Thread Pool 

System will in itialize all its components. Worker Thread 

and Job are the two most important objects of Thread 

Pool System. Worker Pool and Job In Queue are two 

data structures used to hold the references to Worker 

Thread and Job entities. Worker Thread will be in any 

one of two states called busy and idle. At system startup 

there will be two objects of WorkerThread in the 

Worker Pool in the waiting state. The dynamic 

optimization strategy discussed later will increase and 

decrease the number of Worker Thead in the Worker 

Pool as needed. These two objects are wait ing for the 

job arrival in the Job In Queue. Job In Queue is a 

monitor object and only one Worker Thread can access 

it at any time (called Active thread) and all other 

Worker Thread in the Worker Pool must wait until the 

active thread will release the lock from this 

synchronized object. When a request will arrive, the 

JobIn Queue will send a notificat ion signal to all the 

wait ing threads in Worker Pool and they will start 

competition to grab the job inside JobIn Queue but only 

one will be the winner and the winner thread will start 

the job execution and after job completion the thread 

will place the job inside Job Out Queue for performance 

measurement purposes, and then the thread will again 

go into the waiting state inside WorkerPool to execute 

other jobs. 

3.1.3 Static Model of Thread Pool System 

Figure 3.2 shows the relationship between the 

classes of the system. Thread Pool System class will 

create one instance of Job In Queue, Job Out Que, 

Worker Pool, Performance Monitor, Throughput 

Detector, Average Wait Detector and Frequency 

Detector ie it has one to one association with other 

classes. Worker Pool has many Worker Threads and 

each Worker Thread has one Timer object to count the 

idle t ime of corresponding thread and delete the 

corresponding thread if Total id le t ime is equal to 4 

seconds. JobIn Queue and Job Out Queue may have 

many jobs. Frequency Detector has a single Frequency 

Holder object. Performance Monitor has single objects 

of Phase History, Job History, TAT Calc and 

Performance Checker classes. Phase History has many 

objects of Phase and Job History has many Objects of 

Job. 
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3.2 System Implementation 

In this section we will examine the thread pool 

system implementation in detail, but first we need to 

discuss those quantitative measures or performance 

metrics which are the foundation of our dynamic tuning 

strategy. 

3.2.1 Performance Metrics 

Main focus of our thread pool system is Quality of 

service i.e. every client who is submitting job to the 

system should get a fair and prompt response and this 

goal requires the performance metrics of thread pool 

system to be of low cost, easily measurable and 

experimentally verifiable. In order to understand the 

performance metrics we need to concentrate on Figure 

3.3 which is basically a Time flow diagram of a user’s 

request. The diagram depicts that the request passes 

through different stages with the passage of time. 

Turnaround time (TAT in milli seconds) is the 

difference between job complet ion time and the time the 

job was submitted to the system. TAT is a collection of 

three components. The Response time (milli seconds) is 

the time from the submission of request until the first 

response from the server is produced; it is also called 

Response Latency. The idle time  (milli seconds) of a job 

is actually a time the job has been waited in the ready 

queue for its turn to execute, and the processing time is 

the time spent for a job to be completed by the system. 

Now following are the solid definitions of the 

performance metrics used by our thread pool system.  

3.2.1.1 Turn around Time of Jobs. (ms)  

The interval from the time of submission of user 

request to the time of request completion is called 

turnaround time (TAT). 

3.2.1.2 Wait Time/Idle Time of Jobs (ms) 

Amount of time a job spent waiting in the ready 

queue. FBOS will calculates the average wait times of 

jobs in the queue by Average Wait Detector that is 

invoked at regular time intervals (after 200 miliseconds) 

and calculates the average waiting times of the waiting 

requests by the following formulae [19]. 

 

Where Tcurrent is the current time and Tarrival (k) is 

the time when k-th request arrived in the queue at the 

server and n is the size of JobIn Queue. 

In this thesis the FBOS dynamic tuning strategy will 

minimize the wait time to gain maximum performance.  

3.2.1.3. Throughput 

Number of jobs completed in one second within 

specified conditions. ThroughputDetector is a timer 

class and an object of this class is invoked at uniform 

time intervals (after 1 second) to detect the total 

completed requests by the thread pool system. 

 

Figure 3.2. Static model of proposed thread pool system. 

 

Figure 3.3. Time flow of client’s request. 

Less idle time, less turnaround time and high 

throughput of system will ult imately result in maximum 

performance and Quality of service (QOS) will be 

achieved ultimately and all the users will get a fair 

response. The thread pool system would try to reduce 

the idle time of jobs as much as possible so that the idle 

time moves to zero and the turnaround time of all the 

requests only becomes equal to processing time of the 

job. In th is case the system will provide maximum 

throughput. When the system will be in the stable state 

then the thread pool system will contain an ideal amount 

of threads in the pool to service request and those 

threads will process the request as soon as it would 

arrive and no request will wait in the request queue, in 

this case the turnaround time would automatically be 

equal to the processing time of request and the system 

will produce the maximum throughput and provide the 

Quality of Service which is the main goal of underlying 

thread pool system. 

3.2.2. Dynamic Tuning Strategy 

In this section, we will examine the dynamic tuning 

strategy in detail. First, a general structure of the 
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strategy is presented and then we will separately discuss 

each and every component of the strategy. 

3.2.2.1  General Structure of the Strategy 

The FBOS strategy is depicted in Figure 3.4 which 

is responsible to improve system throughput and 

decrease response time at any rate of incoming client’s 

requests also known as request Frequency. The dynamic 

tuning strategy will respond to two different types of 

scenarios, called high frequency rate scenario and low 

frequency rate scenario. System will respond to the 

clients with fair and prompt response at both scenarios. 

At high rate scenario the strategy is responsible to 

dynamically grow the size of pool and take the pool size 

at an ideal level, and at low rate scenario it can decrease 

the pool size if necessary. Frequency detection process 

is performed by a component called Frequency 

Detector. At system startup the main components of 

thread pool System will be initialized, and WorkerPool 

will in itially contain only two Worker Thread objects 

which are responsible to execute client’s job. Each job 

entered in the system will be marked with timestamps at 

different stages and the Turnaround time, wait time and 

processing time of each and every job is calculated. 

After complet ion of every two jobs (called a phase), the 

performance monitoring component of the system will 

be activated which will in turn run a thread named TAT 

Calculator which will calcu late TTAT (Total Turn 

Around Time in ms)  and TTWOW (Total Turnaround 

time With Out Wait in ms). TTAT is the sum of 

Turnaround times of two jobs and TTWOW is sum of 

turnaround times of two jobs without their wait t imes. 

After calculating these variables , TAT Calculator will 

initialize a  Phase object and store TTAT and TTWOW 

values of completed phase in the phase object  and store 

the phase object in Phase History component and then 

PerformanceChecker thread would be activated which 

will extract the current phase from the Phase History 

and check the performance of the completed phase and 

if each and every job  got a prompt response and they 

have not been waited in the ready queue then it means 

that the system is in stable state. The system stability 

means that there is enough number of WorkerThreads 

inside Worker Pool at the current frequency rate and the 

pool does not need to be optimized. If the Performance 

Checker will observe that the system is not in stable 

state (unstable mode) ie there are some jobs in the 

completed phase which did not get a prompt response 

and the jobs have been waited inside ready queue then 

this situation means that the current size of Worker Pool 

in not an ideal one and its size need to be increased, at 

this stage the performance Checker will call the expand 

Pool(Frequency Rate) function of  Thread Pool System 

which will in turn expand the Worker Pool size 

according to the current frequency rate. The higher the 

frequency rate the more grow will occur in the Worker 

Pool.  Each thread in the pool have a Timer object 

which will count the amount of time the thread has been 

waited in the idle state and did not execute any  job. 

When a thread will go into busy state and start 

executing a job, its timer would be stopped and when 

the thread will go into the idle state again, its timer 

would be started again, and when the timer will count 

the idle time of corresponding thread up-to four 

seconds, it will immediately destroy its corresponding 

thread and the size of the Worker Pool will be decreased 

automatically. Following is a detailed description of 

each component of dynamic tuning strategy. 

 

Figure 3.4. FBOS dynamic tuning strategy. 

3.2.2.2   Detecting Frequency Rate 

Thread pool system can tackle two different types of 

request frequency scenarios during run time, called high 

frequency rate scenario and low frequency rate scenario 

and the system will respond to clients with fair and 

prompt response at both scenarios. At high rate scenario 

the strategy is responsible to dynamically grow the size 

of pool and take the pool size at ideal level, and at low 

rate scenario it will decrease the pool size. The rate of 

incoming requests is detected by a component of thread 

pool system called Frequency Detector. The class 

Thread Pool System maintains a variable named 

frequency Count that is incremented every time when a 

request arrives, the value of this variable is read 

periodically (after every second) by Frequency Detector 

in the run method, that first reads its value and then it 

again sets this variable to zero so that the variable can 

maintain the frequency of next execution times. Figure 

3.5 is a class Diagram of Frequency Detector which is a 

Timer object, and it would be uniformly  activated after 

every one second and detects the number of requests 

that have been submitted by the request simulator in one 

second. It will then store the frequency rate in a 
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synchronized object of class called Frequency Holder 

which is a synchronized object and Frequency Detector 

will update this object after every one second. 

3.2.2.3 Job’s Time Stamping 

A Job or a request is an important entity of thread 

pool system submitted by the Request Simulator to our 

thread pool system at a specific frequency. In the thread 

pool system a job is represented by a class named Job. 

The class diagram is shown in Figure 3.6 with its 

attributes and some of its methods. The description of 

each instance variable is given in Table 3.1.  

Thread pool system needs to know different types of 

time intervals (listed in Table 3.1) about a job and for 

this purpose the thread pool system will use time 

stamping. During run t ime the System will mark time 

stamps on a job at different stages. When a job is 

submitted to the thread pool system, it is marked by its 

submission time with the first time stamp and the job is 

entered into the ready queue (JobIn Queue) which 

follows the FIFO policy. If the system is in stable state 

then the job will be picked by an id le Worker  Thread 

immediately and its execution will be started otherwis e 

the job will do wait  in the queue for its turn of 

execution. When the job is extracted by a Worker 

Thread from ready queue for its execution, it is marked 

by it’s dequeue time with second time stamp and then 

its execution will be started. When the job is  completed 

it is again marked by its completion time with third time 

stamp and then the job is inserted into another queue 

(Job Out Queue) for performance analysis. At this stage 

the job can be examined by the system about its timing 

intervals. Following three important variables about 

every job will be calculated by the system for 

performance measurement. 

Frequency Detector  

fH :  Frequency Holder  

run 0  

Figure 3.5. Class diagram of frequency detector. 

Wait Time=  deQueue Time – inQue Time      (1) 

Turn  Around  Time =  complet ion Time –  

    in Que Time               (2) 

Turn Around TimeWOW = turn Around Time –  

      wait Time                (3) 

If the system is in stable state then the job’s wait 

Time would be zero and the values of both equation 1 

and equation 2 would be same, and if the system was in 

unstable state then the job’s wait Time variable will be 

greater than zero and value of turn Around Time would 

greater then value of turn Around Time WOW. 

 

Figure 3.6.   Class diagram of job. 

Table 3.1. Job’s attributes and description 

Attribute Description 

inQueTime 
The time of job submitted to the 
system. 

deQueueTime 
The time of extracting the job from 
ready queue. 

completionTime The time of job completion. 

phaseNo Phase ID of a job. 

jobNo Job ID. 

waitT ime(ms) 
The total idle time of a job: 
deQueueTime - inQueTime 

turnAroundTime(ms) completionTime - inQueTime 

turnAroundTimeWO
W (ms) 

turnAroundTime - waitTime 

3.2.2.4   Phase (Cycle) Explaination 

The thread pool system will monitor the system 

performance for dynamic optimization concern at the 

end of each cycle, which is defined as two completed 

jobs in our system called a phase. A cycle or a phase 

contains the detail of two completed jobs that have been 

executed by the system. Thread Pool System will call 

the performance monitoring component after 

complet ion of a phase. A phase is represented by an 

object of class Phase depicted in Figure 3.7. The 

description of attributes of class Phase is given in Table 

3.2. The detail of phases that have been executed so far 

is stored in an object of class Phase History. Phase 

object is instantiated by a thread called TAT Calculator 
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which is called by Performance Monitoring component. 

A further detail of calculating TTAT and TTWOW is 

discussed in the next section. 

3.2.2.5. Performance Monitoring and Pool Expansion 

The performance of the thread pool system is 

examined and tuned by an object of class Performance 

Monitor which would be activated after every phase 

(two jobs). Performance Monitor will launch its two 

helper threads parallel named TAT Calculator and 

Performance Checker.  Performance Checker thread 

will join TAT Calculator which means that Performance 

Checker will pause its execution until completion of 

thread TAT Calculator. Both of these helper threads are 

discussed below. 

TAT Calculator  

This thread is responsible to calculate the values of 

those variables that will be later used by the 

Performance Checker thread to expand the Worker 

Pool. TAT Calculator is the first thread launched by 

Performance Monitor which will perform two main 

tasks. It will first extract top two completed jobs from 

Job Out Queue, The second task performed by TAT 

Calculator is to calculate TTAT, TTWOW discussed 

below. 

 

Figure 3.7. Class diagram of phase. 

Table 3.2.    Description of attributes of class phase 

Attribute Description 

ID Phase ID. 

poolSize 

Size of  WorkerPool. 

OR Total number of WorkerThread 
that have been completed this phase. 

TTAT(Total 
TturnAroundTime ms) 

Sum of turnAroundTime of two 
jobs. 

TotalWait  ms Sum of wait t imes of two jobs. 

TTWOW(Total 

TturnAroundTime 
Without wait ms) 

Sum of turnAroundTimeWOW of 
two jobs. 

TTAT (Total Turn Around Time ms) 

It is the sum of processing times and wait times of 

two jobs in a phase. TTAT is initialized with sum of 

turnaround Time of two jobs completed so far as 

follows. 

TTAT= turn Around Time1 + turn Around Time 2.(1) 

Where turnAroundTime1 and turn Around Time 2 are 

the turnaround times of two completed jobs. 

TTWOW (Total Turnaround time Without 

Wait ms) 

TTWOW is the sum of processing times of two jobs 

of a phase, i.e. it contains the sum of turnaround times 

of two jobs excluding their wait t imes.  

TTWOW= turn Around Time WOW 1+ turn Around  
                  Time WOW2      (2) 

Where turn Around Time WOW1 and turn Around 

Time WOW 2 are the turnaround times without waits of 

two completed jobs that belong to the current phase. 

PerformanceChecker 

This thread is responsible to expand the pool size on 

low performance. After completion of TAT Calculator 

thread, the Performance Checker thread will start its 

execution which is responsible to measure the 

performance of thread pool system and expand the pool 

according to request frequency, if necessary. 

Performance Checker thread will ext ract the most recent 

completed phase from the Phase History and check the 

performance of the phase. The variables related to 

performance measurement of thread pool system in the 

phase   have just been calculated by TAT Calculator and 

now Performance Checker thread will ext ract the 

current phase from the Phase History and check the 

performance to make decisions of dynamic tuning of 

thread pool. Performance Checker will compare TTAT 

and TTWOW and if TTAT is greater than TTWOW the 

Performance Checker will get the current frequency rate 

from Frequency Holder object and call the expand Pool 

(Frequency Rate) function of Thread Pool System that 

will set the size of pool equal to the current request 

frequency. The pseudo code of pool expansion 

according to the request frequency is given below.  

If (TTAT > TTWOW) then 

{ 

frequency= Frequency Holder.get Frequency 

create a thread and add to the pool until the size of the 

pool equals to frequency 

} 
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If the system will be in a stable mode then it means 

that the WorkerPool will have an ideal number o f 

Worker Threads so each job of phase will get a prompt 

response and no one will spend an idle time so TTAT 

and TTWOW values would be same and the pool will 

not be expanded. 

If the system will be in an unstable mode then some 

of the jobs will spend time in ready queue in idle mode 

and wait time of some of the jobs will be greater than 

zero and TTAT value of phase must be greater than 

TTWOW value. This situation means that the current 

size of WorkerPool in not an ideal one and its size need 

to be increased and the performance Checker will call 

the expand Pool (Frequency Rate) function of Thread 

Pool System which will in turn expand the WorkerPool 

size according to the current Frequency Rate. At higher 

frequency rate the pool expansion rate would be h igher 

and vice versa. 

3.2.2.6.  Shrinking Pool Size 

The dynamic tuning strategy will not only expand 

the pool at ideal level but it will also decrease the size of 

WorkerPool at low frequency rate scenario. From high 

request frequency mode to low request frequency mode 

the job arrival rate inside ready queue would be slow 

and the Worker Threads that have been increased 

previously on high frequency rate scenario will now 

have less number of jobs to execute so only limited 

number of Worker Threads would be in busy mode 

executing client’s job and there would be some threads 

remain id le most of the time. In this case the timer 

objects inside idle threads will count the idle time and 

when the idle time of thread will be equal to four 

seconds then the timer will delete its corresponding 

thread that would result in reduction of pool size. This 

reduction may continue until the size of Worker Pool 

reduces to two, i.e. there would be at least two Worker 

Threads in the pool. 

4. Analysis of FBOS  

This section discusses the experimental environment 

and analysis of thread pool system. 

4.1. Request Simulator 

In order to measure the performance of thread pool 

system a Java based request simulator is constructed 

that will behave as a multithreaded server to the thread 

pool system. It will submit requests to the thread pool 

system at random frequencies. The request is not a real 

I/O request but just a simulat ion of I/O request by 

sleeping for a specific interval of time defined as 

intensity level. The intensity level is random for each 

request from 500 milliseconds to 1500 milliseconds. 

The general architecture of the Request simulator is 

given in Figure 4.1 with the following three 

components. 

i) Job Creator: This component will create a set of five 

hundred requests with random I/O intensities and then 

create its two more clones so that same set of jobs can 

be send to three strategies for experiment. 

ii) Request Sender Component: This is a Timer object 

that will send requests to the thread pool system at 

random frequencies . 

ii) GUI Component: This object is responsible to 

display the performance statistics related to each request 

and each phase that have been completed. 

The Request simulator will show us the complete 

informat ion of each job submitted to the system 

including information of time stamps of the job and it 

will show us the performance statistics of average waits, 

throughput per second and the thread pool size at 

different intervals.  

4.2. Experimental Environment 

For the experiments, the Request simulator and the 

thread pool system are running on same machine. The 

operating system is Microsoft Windows 7 and the 

processor is Pentium IV 2.80 GH with 1MB L2 cache. 

The physical RAM size is 1GB. Figure 4.2 is the 

client’s request burst used for the experiments. The 

simulation is performed for twenty seconds with 

different frequencies as shown in the Figure 4.2. Same 

client’s load is used for three strategies separately and 

the data collected from simulat ions is plotted for 

analysis discussed next.  

4.3. Analysis and Results 

This section presents a comparative analysis of 

FBOS strategy with Heuristic and Waterfall strategy on 

the basis of average waits of queued requests and 

throughputs gained per second. The data collected from 

experiments is presented in the form of tables and their 

corresponding graphs are also presented as figures. 

FBOS and Heuristic strategies are phase based 

strategies in which the performance of system is 

analyzed after completion of a phase and then, tuning is 

performed if needed, whereas Waterfall is not a phase 

based strategy it doesn’t analyze performance of system, 

but it increases the pool size according to the  amount of 

requests ,when there is a low request arrival it acts as a 

static thread pool but when the frequency increases and 

there are too many requests in the queue and all of the  

low watermark threads are busy ,then size of request 

queue becomes greater than thread pool size it starts 

increasing its pool size by one thread to execute the 

wait ing requests and behaves like thread per request 

model. The value of low watermark is set to two threads 
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for all experiments. The pool size of three strategies in 

different execution times is presented in Table 4.1 and 

corresponding data is plotted in Figure 4.3 which shows 

that FBOS strategy keeps its pool size accord ing to the 

client’s request frequency whereas other two strategies 

keep no relation of pool size and request frequency and 

this is the reason that FBOS outperforms other two 

strategies. For example in Figure 4.2 the request 

frequency is 18 in execution times of 2 to 5 seconds and 

the pool size of FBOS in Figure 4.3 is also 18 in theses 

execution times and when the request frequency 

becomes 24 in execution t imes  of 10 to 13 seconds the 

pool size of FBOS also grows to 24.  

Now we will discuss the throughput gain of three 

strategies. The data of throughput gain from each 

strategy is presented in Table 4.2 and the throughput 

data is also plotted in form of graph in Figure 4.4. The 

x-axis shows the execution times in seconds and y-axis 

shows the number of requests that have been processed. 

Figure 4.4 shows that FBOS strategy outperforms other 

two strategies in terms of throughput per second. 

Heuristic strategy produces less throughput than other 

two strategies because of two reasons, first it performs 

its optimizat ion after completion of five completed jobs 

where as FBOS performs optimization after two jobs, 

second it increases the pool size by a constant value i.e. 

two threads whereas FBOS increases its pool size 

according to the ongoing request  frequency. For 

example in  Figure 4.3 when the execution times was  

10 seconds the  pool size was 18 but when the 

frequency increased up to 24 requests per second in the 

next time interval then FBOS found that TTAT became 

greater than TTWOW than it created six more threads to 

keep its pool size equals to request frequency i.e. 24. 

Watermark is giving more throughput than FBOSS in 

initial execution times as it grew its pool size to six very 

early on initial client’s burst that can be seen in Figure 

4.4, but when the client’s load is continuously 

increasing the watermark strategy started behaving like 

thread per request model and it faced thread creation 

overhead that ultimately resulted in low throughput. The 

smartness of FBOSS strategy is that whenever the 

request frequency increases, TTAT obviously becomes 

greater than TTWOW and FBOS immediately grows its 

pool size and keep it equal to frequency and then 

recycles its threads in the subsequent execution times 

whereas Watermark faces thread per request creation 

overhead whenever its queue size becomes greater than 

its pool size i.e. fo r every new request it first creates a 

thread because all other threads are busy and in this way 

it gains less throughput. The comparison of average 

waits of three strategies is presented in Table 4.3 and 

the data of average waits is also plotted in form of graph 

in Figure 4.5.  

The x-axis shows the execution times in 

milliseconds and y-axis shows the average waits in 

milliseconds. FBOS strategy overall produces less 

average waits than other two strategies. Heuristic is 

producing higher average waits than other two strategies 

because of its slow optimization process as discussed 

before. Watermark is giving less average waits than 

FBOS in the initial execution times as it grew its pool 

size to six very early on initial client’s burst as shown in 

Figure 4.3 while FBOS uses two initial threads but in 

the execution times of 10 second and 18 second when 

the client’s burst become 24 requests per second and 30 

requests per second, the average wait times of 

Watermark are h igher than FBOS because FBOS 

strategy has kept the pool size equal to the request 

frequency and recycling its threads efficiently and its 

pool size is more than watermark strategy, whereas 

watermark is facing thread creation overhead and its 

pool size is smaller than pool size of FBOS and that’s 

why average waits of queued requests in case of 

Watermark strategy are higher than FBOS strategy. 

The analysis results have been proved that FBOS is 

more performance efficient than Watermark and 

Heuristic strategies. FBOS produces less idle time fo r 

the queued requests and produces higher throughput 

than Watermark and Heuristic strategy. 

 

Figure 4.1. General architecture of request simulator. 

 

Figure 4.2. Client’s load on the server. 
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Table 4.1.   Pool size comparison of three strategies 

Execution 

Time 
(sec) 

FBOS Heuristic Watermark 

1 2 2 6 

2 18 2 12 

3 18 2 12 

4 18 2 18 

5 18 2 18 

6 18 4 18 

7 18 6 18 

8 18 10 18 

9 18 14 18 

10 18 18 18 

11 24 18 21 

12 24 18 21 

13 24 18 21 

14 24 18 21 

15 24 18 21 

16 24 22 21 

17 24 24 21 

18 24 24 22 

19 30 24 22 

20 30 24 22 

 

 
Figure 4.3. Comparison of pool size. 

 
Figure 4.4 Comparison of throughput. 

Table 4.2. Throughput comparison of three strategie 

Execution 

Time(sec) 
FBOS Heuristic Watermark 

1 2 2 6 

2 4 4 20 

3 24 7 36 

4 47 10 56 

5 72 13 78 

6 94 18 92 

7 108 27 112 

8 129 40 130 

9 150 60 140 

10 161 85 161 

11 185 110 186 

12 209 134 210 

13 244 160 236 

14 253 180 253 

15 272 205 272 

16 289 240 287 

17 300 270 300 

18 327 305 326 

19 358 335 352 

Table 4.3.   Average wait comparison of three strategies 

Execution 

Time(msec) 
FBOS Heuristic Watermark 

0 0 0 0 

800 487 497 282 

1600 669 679 63 

2400 749.0909 1190.7894 360 

3200 472.75 1383.415 141 

4000 728.2632 1879 438 

4800 56 2040.5555 0 

5600 0 2150.75 0 

6400 0 2553.9639 0 

7200 0 2477.721 0 

8000 0 2736.238 0 

8800 0 2286.4578 0 

9600 0 2327.0247 0 

10400 209 1859.7561 141 

11200 0 1452.0632 32 

12000 0 1049 313 

12800 0 1100 0 

13600 0 1211 0 

14400 0 945 0 

15200 0 729 0 

16000 0 602 0 

16800 0 381 0 

17600 0 249 0 

18400 0 187 110 

19200 0 67 407 
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Figure 4.5. Comparison of average waits. 

5. Conclusion and Future Work 

The main contribution of this thesis is the 

presentation of FBOS dynamic tuning strategy which is 

based on set of quantitative measures that are easily 

measurable and experimentally verifiable. FBOS 

strategy is presented for those server side applications 

that use thread pool architecture. The FBOS strategy is 

implemented in JAVA and the strategy can dynamically 

resize the thread pool on the basis of request frequency 

and it lets the thread pool system running gracefully. 

The quantitative measures of FBOS s trategy are 

turnaround time of requests, idle time of requests and 

the system throughout. FBOS performs dynamic 

optimization of the thread pool when it finds that the 

turnaround time of jobs involves wait ing time and it 

then reacts by increasing the pool s ize according to 

current request frequency and then recycles the threads 

for incoming requests efficiently.  
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