
The Nucleus 50, No. 4 (2013) 351-358

High-level power optimization for array multipliers 351

Paki stan

The Nucleus

The Nucleus
A Quarterly Scientific Journal of Pakistan

Atomic Energy Commission

N C L E A M , I S S N 0 0 2 9 - 5 6 9 8

HIGH-LEVEL POWER OPTIMIZATION FOR ARRAY MULTIPLIERS

Y. A. DURRANI

Department of Electronic Engineering, University of Engineering and Technology, Taxila, Pakistan

(Received July 09, 2013 and accepted in revised form November 19, 2013)

Multiplication is the basic operation in most arithmetic features in computing systems. Generally multiplier occupies
large area, long delay and high power dissipation. Therefore, low power multiplier design has been an important part in
very large scale integrated (VLSI) design. Power consumption is directly related to data switching patterns and it is
difficult to consider high-level application-specific data characteristics in power optimization. In this paper, we present a
feasible method of pipelined array multiplier and evaluated the results by the flexible estimation methods at register
transfer level (RTL). The multiplier architecture is for low power and high speed applications. The experimental results
indicate that the internal optimization using pipelined technique reduces the power consumption of the circuit
considerably.

Keywords : Array multiplier, Pipelining, RTL, Power estimation, Critical path, Power dissipation

1. Introduction

As the scale of integration keeps growing, more
and more sophisticated digital systems are being
implemented on a VLSI chip. The portable devices
not only demand great computation capacity but
also consume considerable amount of energy.
While performance and area remain to be two
major design goals, power consumption has
become a critical concern in today‟s system
design. The need of low power VLSI systems
arises from two main factors. First, with the steady
growth of operating frequency and the processing
capacity per chip, large current has to be delivered
and the heat due to large power consumption must
be removed by proper cooling techniques. Second,
the battery life in portable devices is limited.

This paper addresses the high-level
optimization technique for low power multipliers.
High-level techniques refer to RTL approach that
consider multiplication‟s arithmetic features and
input data characteristics. The main research
hypothesis of this work is that high-level
optimization of multiplier design produces more
power-efficient solutions than optimization only at
low-levels. Specifically, we consider how to
optimize the internal architecture of multipliers and
how to control the active multiplier resource to
match the external data characteristics. Our
primary objective is the power reduction with the
smaller area and the minimum delay. By using
RTL, it is possible to achieve both power reduction

and area/delay reduction, which is the strength of
high- level optimization. The trade-off between
power, area and delay is also considered in some
cases.

Several approaches have been proposed for
positive numbers with two‟s complement form
[1-3]. The basic idea was the fast implementation
of the addition of the partial products. For this
purpose, the Carry Save Addition technique has
been extensively used. In this approach, the
intermediate results were always in a redundant
form of two numbers. Two types of arrays were
introduced for the addition of the intermediate
results. In the first type, the arrays were iterative
with regular interconnection structure that permits
multiplication without delay [4, 5]. The second type
arrays were used in tree form, permitting higher
speed in time, but the irregular form of a tree-array
did not permit an efficient VLSI realization [6].
Modern multiplier designs used [4:2] adders to
reduce partial products logic delay and regularize
the layout. To improve the regularity, the regular
structured tree with recurring blocks and
rectangular-styled tree was proposed at the
expense of more complex interconnects [7, 8]. In
Ref. [9], three dimensional minimization algorithm
was developed to design the adder of the maximal
possible size with optimized signal connections,
which further shortened the path by 1~ 2 XOR
delays. However, the resulting structure was more
complex than [4:2] adder based tree.

 Corresponding author : yaseer.durrani@uettaxila.edu.pk

The Nucleus 50, No. 4 (2013)

352 Y.A. Durrani

Several optimization techniques have achieved
power reduction at all abstraction levels [10-13].
The techniques at the lowest technology level and
the highest architecture/system level were
generally more efficient than techniques at middle
levels. In low power, technology-level optimization
affects three important factors such as: the load
capacitance , the supply voltage and the

clock frequency . All three factors are very
effective for RTL optimization.

Recently, we have presented power
macromodels for intellectual property (IP) macro-
blocks and the IP-based digital systems [14-16]. In
this paper, we continue our previous research
developing a feasible method of pipelined array
multiplier and evaluated the results by the flexible
estimation methods at RTL. The proposed
multiplier architecture is for low power and high
speed applications.

The rest of this paper is organized as follows. In
Section 2 we give the background for the array
multiplier architecture. In Section 3, we discuss the
power macromodeling for the multiplier. Power
estimation is evaluated in Section 4. Section 5
summarizes our work.

2. Array Multiplier Methodology

The multiplication process may be viewed to
consist of the following two steps: the evaluation of
partial products and the accumulation of shifted
partial products [12, 13]. Binary multiplication
consists of following basic operations:

If we multiply two bits p and q, then logical AND
operation produces the same result as shown in
figure 1.

Figure 1. Bit-level multiplier

An array multiplier accepts the multiplier and
multiplicand and uses an array of cells to calculate
the bit products, individually in a parallel

manner. Figure 2 illustrates a symbol for the high-
level view and the multiplication of two 4-bit words.
The product bits are generated by combining

multiplicand and multiplier bits using an AND gate,

, where are bits of the multiplier and

 are bits of the multiplicand. A row of cells adds
0 to the partial product if the corresponding bit of
the multiplier is 0 and adds the multiplicand if it is
1. The structure of the array causes the
multiplicand to shift to the left corresponds the
weight of the multiplier bit.

For n-bit words, each bit multiplies the
multiplicand on a bit-by-bit basis. The product

term from least significant bit is aligned to the
multiplicand, while the next term is shifted one
column left. The array builds until every bit of the
multiplier is used. The product bits are obtained
by summing each of the i-th columns, accounting
for a carry the (i-1)-th the column. A simple
expression in “(1)”:

 (1)

Where .

For the multiplication of two n-bit words, the
algorithm for the product can be expressed in “(2)”:

 (2)

With , the final result such that .

The factor gives the addition while

accounts for a right shift. The factor of
multiplying p is used to compensate for the
introduced by the right shift at the end of the
calculation.

An array multiplier accepts the multiplier and
multiplicand and uses an array of cells to calculate
the bit products individually in a parallel

manner. The bit product is add it to other

contributions in column . This produces
the sum for each product bit in “(2)”.

An equivalent description of the operation is
obtained in base-10 values :

 (3)

Then forming the product

 (4)

We see in “(4)” the terms provide the bit

value and the weighting. This scheme
calculates the bit products using AND gates.

The product bits are formed using adders in each
column. The adders are arranged in a carry-save
chain by noting the carry-out bits are fed to the

p

q

s
×

p

q

s=p×q

The Nucleus 50, No. 4 (2013)

High-level power optimization for array multipliers 353

Figure 2. Multiplication of two 4-bit words.

Figure 3. Structure array multiplier showing critical path.

next available adder in the column. The array
multiplier accepts all the input bits simultaneously.
The longest delay in the calculation of the product
bits depends on the speed of the adders. The
carry-chain in that originates from the carry bits
from the column and propagates through the

 quantities.

The speed of the multiplier is determined by
both architecture and circuit level. The speed can
be expressed by the number of the cell delays
along the critical path on the architecture level of
the multiplier. The cell delay, which is normally a
delay of an adder, is determined by the design of
the circuit of the cell. In terms of power
consumption, the array multiplier is more efficient
than other types. Basically the array multiplier
originates from the multiplication parallelogram. As

shown in Figure 3, each stage of the parallel
adders should receive some partial product inputs.
The carry-out is propagating into the next row. The
bold line is the critical path of the multiplier. In a
non-pipelined array multiplier, all of the partial
products are generated at the same time. For nxn-
bit array multiplier the critical path consists of two
parts: vertical and horizontal. Both have the same
delay in terms of full adder (FA) and the gate
delays. For an n-bit array multiplier, the vertical
and horizontal delays are both the same as the
delay of an n-bit full adder. The FA circuit produces
the two-bit sum of three one-bit binary numbers.
Several of the FA can be reduced to Half Adders
(HA). The FA is the most critical circuit in the
multiplier, as it ultimately determines the speed
and the power dissipation of the array.

+

F

A

 0 0 0

F

A

F

A

F

A

+ +

F

A

F

A

F

A

F

A

F

A

Multiplicand

Multiplier

Product

Multiplier

The Nucleus 50, No. 4 (2013)

354 Y.A. Durrani

Figure 4. A synchronous pipelined model.

In our experiments, instead of making one
straight forward 4×4-bit multiplication having eight
bit result, it can carry out the multiplication in two
steps: First is the four 2×2-bit multiplications
carried out, by creating four partial 4-bit products.
These partial products are added together to
create the final 8-bit product. In our design there
are only three different type of non-complex blocks
are needed to build up the entire multiplier. These
blocks are Carry Propagate Adder (CPA), Carry
Save Adder (CSA) and Multiplexer (MUX) as
shown in figure 6-a. The four different partial
products are created with the four multipliers with
one CPA and four MUX blocks. Each MUX block
has two bit input data while the CPA takes four bit
input data. All four inputs of the multiplexers are
four bit wide. The addition and the carry shift are
performed with two CSA and one CPA blocks,
which permits the addition of the outputs of the
right boundary adders. Each CPA and CSA block
has six FA. The proposed architecture has the
advantage of low power consumption and the high
operating speed. Moreover, it occupies small area
due to the less number of transistors. This
architecture is achieved at the circuit level by
minimizing the number of internal node
capacitances and reducing the switching activity in
the circuit.

3. Pipelined Array Multiplier

Pipelined multipliers are effective in systems
where arithmetic throughput is more important than
the latency. A linear pipeline processor is a
cascade of processing stages which are linearly
connected to perform a fixed function over a
stream of data flowing from one end to the other.
Our basic model of the synchronous pipelining is
illustrated in Figure 4. The clocked registers are
used to interface between different stages. Upon
the arrival of a clock pulse, all registers data
transfers simultaneously to the next stage.
Successive tasks or operations are initiated one
clock per cycle to enter the pipeline. Once the

pipeline is filled, one result emerges from the
pipeline for an additional cycle. This throughput is
sustained only if the successive tasks are
independent of each other. The clock cycle τ of a
pipeline is determined as: Let be the time delay
of the circuitry in stage the setup time of the

register, and the Clock-to-Q delay. Denote the

maximum stage delay as , then:

()max
1

m i
i

k

 (5)

m s qT T
 (6)

The pipeline frequency is defined as the inverse
of the clock period:

1
f (7)

Ideally, a linear pipeline of k stages can process n

tasks in clock cycles, where k cycles
are needed to complete the execution of the very
first task and the remaining tasks require

 cycles. Thus the total time is:

(1)kT k n
 (8)

where τ is the clock period.

Behaviourally our proposed pipelined array
multiplier is represented by a multiplier followed by
two stage registers shown in Figure 5a and the
summary of the Hardware Descriptive Language
(HDL) code is demonstrated in Figure 5c. The
multiplier consists of eight breaking up input
adders in two sets of the adders with two stage
registers explained in Figure 5b. The HDL coding
style can be helpful to improve the timings of the
data flow. We have implemented the two stage
pipelined array multiplier as demonstrated in
Figure 6b. Introduction of the registers increases
the area of the architecture, when compared to the
non-pipelined architectures.

Combinational

Logic

Td

Combinational

Logic

Td

Input

Tq Ts Tq

Register

Output

Register Register

The Nucleus 50, No. 4 (2013)

High-level power optimization for array multipliers 355

B

A

Clk

D Q

Clk

YD Q

Clk

Y1

 (a) (b) (c)

Figure 5. (a) Visualizing pipelining (b) VHDL code for pipelining.

Figure 6. (a) Schematics of array multiplier, (b) Schematics of Pipelined array multiplier.

4. Power Macromodeling for Array Multiplier

Several approaches have been proposed to
construct power macro-models using International
Symposium on Circuit and Systems (ISCAS-85)
benchmark circuits [11-13]. We have observed that
the same methodology works as well for different

blocks of array multipliers in terms of the statistical
knowledge of their primary I/O.

The power estimation procedure is illustrated in
Figure 7. In the high-level flow, the first step is the
logic synthesis of the parameterized and structural
HDL description of the arithmetic modules. For
power characterization, we considered only the

PipeMultProc : process

 begin

 wait until clk = '1';

 Y1 <= A * B;

 Y <= Y1;

end process;

MUX

MUX

MUX

CSA

CSA

CPA

R

Stage-1

R R
R

R R R

MUX

CPA

Stage-2

CPA

MUX

MUX

MUX CSA

CSA

CPA

MUX

The Nucleus 50, No. 4 (2013)

356 Y.A. Durrani

Figure 7. High-level characterization flow.

dynamic power dissipation, which forms the
dominant component of the total power. In the
second step, the switching activity per node via
logic-level simulation has been taken place to
compute the power for a certain input vector such
as:

2

1
i

N

load dd i
i

Power C V fE (9)

Where is the capacitance at node i, is the
power supply voltage, f is the frequency and is the

activity factor at node i . The term of “(9)” is the

actually the number of transitions from logic „1‟ to
logic „0‟ per time unit for the node i , which is equal
to the ratio of number of node transitions from logic
„1‟ to logic „0‟, divided by the total number of input
vectors:

1 0

1 0

#
.

#

i

i

trans
f E f

vectors
 (10)

From “(9)” and “(10)” the power is:

N

i

load

dd

ii
transC

vectors

V
Power

1

01

2

#
#

 (11)

The array multiplier is simulated under different
input sample streams with the signal
probability . Signal probability is used for
accurate estimation of signal activity. Therefore it is
essential to accurately calculate signal probability
for further use in estimating activity.

The P(x) in “(12)” of a node x in the circuit
corresponds to the average fraction of clock cycles
with a period of T in which the node has a steady
state logic value of ONE.

 (12)

Given with the number of primary inputs r and
the input binary stream

Parameter VHDL

Description

Synthesis

Logic Level

Description

Logic Level

Simulation

Parameter Set

Target

Technology

Target

Technology

Switching Activity

per node

Area/Delay

Estimation

Capacitance

per node

Power Estimation

The Nucleus 50, No. 4 (2013)

High-level power optimization for array multipliers 357

Table 1. Estimated area for the 4x4-bit multiplier.

Multiplier Area

4x4-Bit Multiplier 77494

4x4-Bit Pipelined Multiplier Stage-(1) 89434

4x4-Bit Pipelined Multiplier Stage-(2) 104166

Table 2. Power optimization of the 4x4-bit multiplier using two stage pipelining.

Non-

Pipelined
Multiplier

Pipelined Multiplier

Input Signal
Probability

Power (mW)
Stage-(1)

Power (mW)
Stage-(1)

Power Optimization in %
Stage-(2)

Power (mW)
Stage-(2)

Power Optimization in %

0.125 0.7490 0.43424 72.48 0.4480 67.18

0.250 1.947 1.1555 68.49 1.2063 61.40

0.375 3.0628 1.7802 72.04 1.864 64.31

0.500 4.1441 2.2708 82.49 2.3812 74.03

0.625 4.8275 2.6061 85.23 2.739 76.25

0.750 4.5799 2.6728 71.35 2.8194 62.44

0.875 3.4788 2.5384 37.046 2.6793 29.83

of length s, the multiplier is simulated with eight
different signal probabilities with length of 1,000
random vectors. The power measurements were
normalized by different operating frequencies.

5. Experimental Results

In this section, we show the results of our
power optimization approach. We have
implemented a pipelined array multiplier of simple
accumulation algorithm by HDL language as
shown in Figure 6(a,b). During the characterization
phase, the average power consumption measured
using power function f(.) in “(11)”, while least
square fitting is used to perform linear regression.
The input chosen sequences are highly correlated
and they are generated by our new method. The
accuracy is tested running gate-level and RTL
simulations. The power is estimated using Monte
Carlo zero-delay simulation technique. We
compare our power macro-modelling results

estimatedP with Synopsys Power Compiler tool

simulatedP and compute the average absolute and

maximum percentage errors using “(13)”.

100%
simulated estimated

error

simulated

P P
P

P
 (13)

The given input metrics values are more
accurate for the specify range between [0.2, 0.8]
and less accurate between [0, 0.2] and [0.8, 1].
The minimum simulations length can be
determined through convergence analysis.
Converging on the average power figure help us to
identify the minimum length necessary for each
simulation by considering when the power
consumption gets close to a steady value given an
arbitrary acceptance threshold. Also the
convergent sample size is not a function of circuit
size, it depends on how “widely” the power
distributes. Regression analysis is performed to fit
the model‟s coefficients. For the non-pipelined and
pipelined array multipliers, we measured
correlation coefficient 96% and 87%, respectively.

The Nucleus 50, No. 4 (2013)

358 Y.A. Durrani

Because of the regular circuit architecture in the
pipelined array multiplier, we annotated the
activities of the registers to evaluate the activities
and power consumption of whole circuits. The
multiplier can be divided into two pipeline stages
as indicated in Figure 6-b, each of the stage
contains the critical path of adders. Introduction of
the registers along the layer of arrays increase the
area of both architectures when compared to non-
pipelined architectures. Moreover, the pipelined
array multiplier presents the highest area value
due to the higher complexity presented by the
modules which process the product terms from
Table 1. We found that a non-pipelined
architecture consumes more power than pipelined
multiplier. In our pipelined approach, glitches were
reduced scientifically, and this reduction put
greater impact on the power dissipation of the
multiplier. However, the less logic depth and delay
values presented by our architecture still make it
significantly more efficient, for a sinusoidal signal.
For a random pattern at the inputs of the
multipliers, where signal correlation was not
present, power saving up to 60-85% was achieved
in the multiplier as shown in Table 2. Reference
values of the power dissipation were obtained
using time delays from Synopsys Power Compiler.

6. Conclusions

We have presented a pipelined array
architecture multiplier. The structure of this array
maintains the same level of regularity as the
normal array multiplier. We have presented results
that show significant improvement in delay and
power. The regularity of our architecture makes it
suitable for applying other reducing power
techniques. In this work we were able to test the
use of pipelining approach in order to reduce the
critical path and unnecessary signal transitions that
are propagated through the array. As we observed,
our multiplier is more efficient due to the logic
depth that reduces the glitches along the circuit.
For a random pattern at the inputs of the multiplier,
where signal correlation is not present, power
saving up to 60-85% was achieved in the
multiplier.

References

[1] Y. Oowaki et al., IEEE J. Solid-State Circuits
22, No. 5 (1987).

[2] R. Sharma et al., IEEE J. Solid-State Circuits
24, No. 4 (1989).

[3] G. Goto, et. al., IEEE J. Solid-State Circuits
27, No. 9 (1992).

[4] N. Itoh et. al., IEEE J. Solid-State Circuits 36,
No. 2 (2001) 249.

[5] V.G. Oklobdzija, D. Villeger and S.S. Lui,
IEEE Trans. Compt. 45, No. 3 (1996) 249.

[6] Dumitru and R. Nouta, VHDL model of an
array-of-array multiplier implemented in
CMOS Sea-of-Gates, IEEE Solid-State
Circuits Conference (1995) pp. 358-361.

[7] K.-S. Chong, B.H. Gwee and J.S. Chang, IET
Circuit Devices System 1, No. 2 (2007) 170.

[8] P. Chan-Ho, C. Byung-soo, L. Dong-ik and
C. Hon-Yong, Asynchronous Array Multiplier
with an Asymmetric Parallel Array Structure,
Advanced Research in VLSI (2001) 202.

[9] A. Asati and Chandrashekhar, A High Speed
Hierarchical 16x16 Array of Array Multiplier
Design, International Conference on
Multimedia, Signal Processing and
Communication Technologies (2009) pp.
161-164.

[10] V. Tiwari, S. Malik and P. Ashar, CAD of
Integrated Circuits and Systems 17, No. 10
(1998) 1051.

[11] C. Tsai et al., A Low Power-Delay-Product
Multiplier with Dynamic Operand Exchange,
IEEE Asia-Pacific Conference on ASICs
(2000) pp. 501-504.

[12] Huang, et al., IEEE International Symposium
on Circuit & Systems (2002) pp. 489-492.

[13] S. Kim and M.C. Papaefthymiou,
Reconfigurable Low Energy Multiplier for
Multimedia System Design, Proceedings of
IEEE Computer Society Workshop on VLSI
(2000).

[14] Y. A. Durrani, A. Abril and T. Riesgo, Efficient
Power Macromodeling Technique for IP-
Based Digital System. Proceedings for IEEE
International Symposium on Circuits &
Systems (May, 2007) pp.1145-1148.

[15] Y. A. Durrani and T. Riesgo, Journal of Low
Power Electronics 3, No. 3 (2007) 271.

[16] Y. A. Durrani and T. Riesgo, Elsevier Journal
of Digital Signal Processing 19, No. 2 (2009)
213.

