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Multiplication is the basic operation in most arithmetic features in computing systems. Generally multiplier occupies 
large area, long delay and high power dissipation. Therefore, low power multiplier design has been an important part in 
very large scale integrated (VLSI) design. Power consumption is directly related to data switching patterns and it is 
difficult to consider high-level application-specific data characteristics in power optimization. In this paper, we present a 
feasible method of pipelined array multiplier and evaluated the results by the flexible estimation methods at register 
transfer level (RTL). The multiplier architecture is for low power and high speed applications. The experimental results 
indicate that the internal optimization using pipelined technique reduces the power consumption of the circuit 
considerably. 
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1.  Introduction 

As the scale of integration keeps growing, more 
and more sophisticated digital systems are being 
implemented on a VLSI chip. The portable devices 
not only demand great computation capacity but 
also consume considerable amount of energy. 
While performance and area remain to be two 
major design goals, power consumption has 
become a critical concern in today‟s system 
design. The need of low power VLSI systems 
arises from two main factors. First, with the steady 
growth of operating frequency and the processing 
capacity per chip, large current has to be delivered 
and the heat due to large power consumption must 
be removed by proper cooling techniques. Second, 
the battery life in portable devices is limited. 

This paper addresses the high-level 
optimization technique for low power multipliers. 
High-level techniques refer to RTL approach that 
consider multiplication‟s arithmetic features and 
input data characteristics. The main research 
hypothesis of this work is that high-level 
optimization of multiplier design produces more 
power-efficient solutions than optimization only at 
low-levels. Specifically, we consider how to 
optimize the internal architecture of multipliers and 
how to control the active multiplier resource to 
match the external data characteristics. Our 
primary objective is the power reduction with the 
smaller area and the minimum delay. By using 
RTL, it is possible to achieve both power reduction 

and area/delay reduction, which is the strength of 
high- level optimization. The trade-off between 
power, area and delay is also considered in some 
cases. 

Several approaches have been proposed for 
positive numbers with two‟s complement form 
[1-3]. The basic idea was the fast implementation 
of the addition of the partial products. For this 
purpose, the Carry Save Addition technique has 
been extensively used. In this approach, the 
intermediate results were always in a redundant 
form of two numbers. Two types of arrays were 
introduced for the addition of the intermediate 
results. In the first type, the arrays were iterative 
with regular interconnection structure that permits 
multiplication without delay [4, 5]. The second type 
arrays were used in tree form, permitting higher 
speed in time, but the irregular form of a tree-array 
did not permit an efficient VLSI realization [6]. 
Modern multiplier designs used [4:2] adders to 
reduce partial products logic delay and regularize 
the layout. To improve the regularity, the regular 
structured tree with recurring blocks and 
rectangular-styled tree was proposed at the 
expense of more complex interconnects [7, 8]. In 
Ref. [9], three dimensional minimization algorithm 
was developed to design the adder of the maximal 
possible size with optimized signal connections, 
which further shortened the path by 1~ 2 XOR 
delays. However, the resulting structure was more 
complex than [4:2] adder based tree. 

 Corresponding author :    yaseer.durrani@uettaxila.edu.pk 



The Nucleus 50, No. 4 (2013) 

352                   Y.A. Durrani 

Several optimization techniques have achieved 
power reduction at all abstraction levels [10-13]. 
The techniques at the lowest technology level and 
the highest architecture/system level were 
generally more efficient than techniques at middle 
levels. In low power, technology-level optimization 
affects three important factors such as: the load 
capacitance , the supply voltage  and the 

clock frequency . All three factors are very 
effective for RTL optimization. 

Recently, we have presented power 
macromodels for intellectual property (IP) macro-
blocks and the IP-based digital systems [14-16]. In 
this paper, we continue our previous research 
developing a feasible method of pipelined array 
multiplier and evaluated the results by the flexible 
estimation methods at RTL. The proposed 
multiplier architecture is for low power and high 
speed applications. 

The rest of this paper is organized as follows. In 
Section 2 we give the background for the array 
multiplier architecture. In Section 3, we discuss the 
power macromodeling for the multiplier. Power 
estimation is evaluated in Section 4. Section 5 
summarizes our work. 

2.  Array Multiplier Methodology 

The multiplication process may be viewed to 
consist of the following two steps: the evaluation of 
partial products and the accumulation of shifted 
partial products [12, 13]. Binary multiplication 
consists of following basic operations: 

 

If we multiply two bits p and q, then logical AND 
operation produces the same result as shown in 
figure 1. 

 

Figure 1. Bit-level multiplier 

An array multiplier accepts the multiplier and 
multiplicand and uses an array of cells to calculate 
the bit products,  individually in a parallel 

manner. Figure 2 illustrates a symbol for the high-
level view and the multiplication of two 4-bit words. 
The product bits  are generated by combining 

multiplicand and multiplier bits using an AND gate, 

, where  are bits of the multiplier and 

 are bits of the multiplicand. A row of cells adds 
0 to the partial product if the corresponding bit of 
the multiplier is 0 and adds the multiplicand if it is 
1. The structure of the array causes the 
multiplicand to shift to the left corresponds the 
weight of the multiplier bit.  

For n-bit words, each bit  multiplies the 
multiplicand  on a bit-by-bit basis. The product 

term from least significant bit is aligned to the 
multiplicand, while the next term is shifted one 
column left. The array builds until every bit of the 
multiplier is used. The product bits  are obtained 
by summing each of the i-th columns, accounting 
for a carry the (i-1)-th the column. A simple 
expression in “(1)”: 

     (1) 

Where   . 

For the multiplication of two n-bit words, the 
algorithm for the product can be expressed in “(2)”: 

      (2) 

With , the final result such that . 

The factor  gives the addition while  

accounts for a right shift. The factor of  
multiplying p is used to compensate for the  
introduced by the right shift at the end of the 
calculation. 

An array multiplier accepts the multiplier and 
multiplicand and uses an array of cells to calculate 
the bit products  individually in a parallel 

manner. The bit product  is add it to other 

contributions in column . This produces 
the sum for each product bit in “(2)”. 

An equivalent description of the operation is 
obtained in base-10 values : 

        (3) 

Then forming the product 

      (4) 

We see in “(4)” the terms  provide the bit 

value and the weighting. This scheme 
calculates the bit products  using AND gates. 

The product bits are formed using adders in each 
column. The adders are arranged in a carry-save 
chain  by  noting  the carry-out  bits  are  fed  to the 

p 

q 

s 
× 

p 

q 

s=p×q 
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Figure 2. Multiplication of two 4-bit words. 

 

 
Figure 3. Structure array multiplier showing critical path. 

next available adder in the column. The array 
multiplier accepts all the input bits simultaneously. 
The longest delay in the calculation of the product 
bits depends on the speed of the adders. The 
carry-chain in  that originates from the carry bits 
from the  column and propagates through the 

 quantities. 

The speed of the multiplier is determined by 
both architecture and circuit level. The speed can 
be expressed by the number of the cell delays 
along the critical path on the architecture level of 
the multiplier. The cell delay, which is normally a 
delay of an adder, is determined by the design of 
the circuit of the cell. In terms of power 
consumption, the array multiplier is more efficient 
than other types. Basically the array multiplier 
originates from the multiplication parallelogram. As 

shown in Figure 3, each stage of the parallel 
adders should receive some partial product inputs. 
The carry-out is propagating into the next row. The 
bold line is the critical path of the multiplier. In a 
non-pipelined array multiplier, all of the partial 
products are generated at the same time. For nxn-
bit array multiplier the critical path consists of two 
parts: vertical and horizontal. Both have the same 
delay in terms of full adder (FA) and the gate 
delays. For an n-bit array multiplier, the vertical 
and horizontal delays are both the same as the 
delay of an n-bit full adder. The FA circuit produces 
the two-bit sum of three one-bit binary numbers. 
Several of the FA can be reduced to Half Adders 
(HA). The FA is the most critical circuit in the 
multiplier, as it ultimately determines the speed 
and the power dissipation of the array.  
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Figure 4. A synchronous pipelined model. 

 

In our experiments, instead of making one 
straight forward 4×4-bit multiplication having eight 
bit result, it can carry out the multiplication in two 
steps: First is the four 2×2-bit multiplications 
carried out, by creating four partial 4-bit products. 
These partial products are added together to 
create the final 8-bit product. In our design there 
are only three different type of non-complex blocks 
are needed to build up the entire multiplier. These 
blocks are Carry Propagate Adder (CPA), Carry 
Save Adder (CSA) and Multiplexer (MUX) as 
shown in figure 6-a. The four different partial 
products are created with the four multipliers with 
one CPA and four MUX blocks. Each MUX block 
has two bit input data while the CPA takes four bit 
input data. All four inputs of the multiplexers are 
four bit wide. The addition and the carry shift are 
performed with two CSA and one CPA blocks, 
which permits the addition of the outputs of the 
right boundary adders. Each CPA and CSA block 
has six FA. The proposed architecture has the 
advantage of low power consumption and the high 
operating speed. Moreover, it occupies small area 
due to the less number of transistors. This 
architecture is achieved at the circuit level by 
minimizing the number of internal node 
capacitances and reducing the switching activity in 
the circuit. 

3. Pipelined Array Multiplier 

Pipelined multipliers are effective in systems 
where arithmetic throughput is more important than 
the latency. A linear pipeline processor is a 
cascade of processing stages which are linearly 
connected to perform a fixed function over a 
stream of data flowing from one end to the other. 
Our basic model of the synchronous pipelining is 
illustrated in Figure 4. The clocked registers are 
used to interface between different stages. Upon 
the arrival of a clock pulse, all registers data 
transfers simultaneously to the next stage. 
Successive tasks or operations are initiated one 
clock per cycle to enter the pipeline. Once the 

pipeline is filled, one result emerges from the 
pipeline for an additional cycle. This throughput is 
sustained only if the successive tasks are 
independent of each other. The clock cycle τ of a 
pipeline is determined as: Let  be the time delay 
of the circuitry in stage  the setup time of the 

register, and  the Clock-to-Q delay. Denote the 

maximum stage delay as , then: 

( )max
1

m i
i

k

     (5) 

m s qT T
     (6) 

The pipeline frequency is defined as the inverse 
of the clock period: 

1
f      (7) 

Ideally, a linear pipeline of k stages can process n 

tasks in  clock cycles, where k cycles 
are needed to complete the execution of the very 
first task and the remaining  tasks require 

 cycles. Thus the total time is: 

( 1)kT k n
     (8) 

where τ is the clock period. 

Behaviourally our proposed pipelined array 
multiplier is represented by a multiplier followed by 
two stage registers shown in Figure 5a and the 
summary of the Hardware Descriptive Language 
(HDL) code is demonstrated in Figure 5c. The 
multiplier consists of eight breaking up input 
adders in two sets of the adders with two stage 
registers explained in Figure 5b. The HDL coding 
style can be helpful to improve the timings of the 
data flow. We have implemented the two stage 
pipelined array multiplier as demonstrated in 
Figure 6b. Introduction of the registers increases 
the area of the architecture, when compared to the 
non-pipelined architectures. 
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Figure 5. (a) Visualizing pipelining (b) VHDL code for pipelining. 

 
Figure 6. (a) Schematics of array multiplier, (b) Schematics of Pipelined array multiplier. 

 

4. Power Macromodeling for Array Multiplier 

Several approaches have been proposed to 
construct power macro-models using International 
Symposium on Circuit and Systems (ISCAS-85) 
benchmark circuits [11-13]. We have observed that 
the same methodology works as well for different 

blocks of array multipliers in terms of the statistical 
knowledge of their primary I/O. 

The power estimation procedure is illustrated in 
Figure 7. In the high-level flow, the first step is the 
logic synthesis of the parameterized and structural 
HDL description of the arithmetic modules. For 
power  characterization,  we  considered  only  the 

 
PipeMultProc : process 

 begin 

  wait until clk = '1'; 

   Y1 <= A * B; 

   Y <= Y1; 

end process; 
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Figure 7. High-level characterization flow. 

 

dynamic power dissipation, which forms the 
dominant component of the total power. In the 
second step, the switching activity per node via 
logic-level simulation has been taken place to 
compute the power for a certain input vector such 
as: 

2

1
i

N

load dd i
i

Power C V fE      (9) 

Where  is the capacitance at node i,  is the 
power supply voltage, f is the frequency and is the 

activity factor at node i . The term  of “(9)” is the 

actually the number of transitions from logic „1‟ to 
logic „0‟ per time unit for the node i , which is equal 
to the ratio of number of node transitions from logic 
„1‟ to logic „0‟, divided by the total number of input 
vectors: 

1 0

1 0

#
.

#

i

i

trans
f E f

vectors
   (10) 

From “(9)” and “(10)” the power is: 

N

i

load

dd

ii
transC

vectors

V
Power

1

01

2

#
#

   (11) 

The array multiplier is simulated under different 
input sample streams with the signal 
probability . Signal probability is used for 
accurate estimation of signal activity. Therefore it is 
essential to accurately calculate signal probability 
for further use in estimating activity. 

The P(x) in “(12)” of a node x in the circuit 
corresponds to the average fraction of clock cycles 
with a period of T in which the node has a steady 
state logic value of ONE. 

    (12) 

Given with the number of primary inputs r and 
the input binary stream  
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Table 1.   Estimated area for the 4x4-bit multiplier. 

Multiplier Area 

4x4-Bit Multiplier 77494 

4x4-Bit Pipelined Multiplier Stage-(1) 89434 

4x4-Bit Pipelined Multiplier Stage-(2) 104166 

 

Table 2.   Power optimization of the 4x4-bit multiplier using two stage pipelining. 

 
Non-

Pipelined 
Multiplier 

Pipelined Multiplier 

Input Signal 
Probability 

Power (mW) 
Stage-(1) 

Power (mW) 
Stage-(1) 

Power Optimization in % 
Stage-(2) 

Power (mW) 
Stage-(2) 

Power Optimization in % 

0.125 0.7490 0.43424 72.48 0.4480 67.18 

0.250 1.947 1.1555 68.49 1.2063 61.40 

0.375 3.0628 1.7802 72.04 1.864 64.31 

0.500 4.1441 2.2708 82.49 2.3812 74.03 

0.625 4.8275 2.6061 85.23 2.739 76.25 

0.750 4.5799 2.6728 71.35 2.8194 62.44 

0.875 3.4788 2.5384 37.046 2.6793 29.83 

 

 

of length s, the multiplier is simulated with eight 
different signal probabilities with length of 1,000 
random vectors. The power measurements were 
normalized by different operating frequencies. 

5.  Experimental Results 

In this section, we show the results of our 
power optimization approach. We have 
implemented a pipelined array multiplier of simple 
accumulation algorithm by HDL language as 
shown in Figure 6(a,b). During the characterization 
phase, the average power consumption measured 
using power function f(.) in “(11)”, while least 
square fitting is used to perform linear regression. 
The input chosen sequences are highly correlated 
and they are generated by our new method. The 
accuracy is tested running gate-level and RTL 
simulations. The power is estimated using Monte 
Carlo zero-delay simulation technique. We 
compare our power macro-modelling results 

estimatedP  with Synopsys Power Compiler tool

simulatedP  and compute the average absolute and 

maximum percentage errors using “(13)”. 

100%
simulated estimated

error

simulated

P P
P

P
   (13) 

The given input metrics values are more 
accurate for the specify range between [0.2, 0.8] 
and less accurate between [0, 0.2] and [0.8, 1]. 
The minimum simulations length can be 
determined through convergence analysis. 
Converging on the average power figure help us to 
identify the minimum length necessary for each 
simulation by considering when the power 
consumption gets close to a steady value given an 
arbitrary acceptance threshold. Also the 
convergent sample size is not a function of circuit 
size, it depends on how “widely” the power 
distributes. Regression analysis is performed to fit 
the model‟s coefficients. For the non-pipelined and 
pipelined array multipliers, we measured 
correlation coefficient 96% and 87%, respectively. 
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Because of the regular circuit architecture in the 
pipelined array multiplier, we annotated the 
activities of the registers to evaluate the activities 
and power consumption of whole circuits. The 
multiplier can be divided into two pipeline stages 
as indicated in Figure 6-b, each of the stage 
contains the critical path of adders. Introduction of 
the registers along the layer of arrays increase the 
area of both architectures when compared to non-
pipelined architectures. Moreover, the pipelined 
array multiplier presents the highest area value 
due to the higher complexity presented by the 
modules which process the product terms from 
Table 1. We found that a non-pipelined 
architecture consumes more power than pipelined 
multiplier. In our pipelined approach, glitches were 
reduced scientifically, and this reduction put 
greater impact on the power dissipation of the 
multiplier. However, the less logic depth and delay 
values presented by our architecture still make it 
significantly more efficient, for a sinusoidal signal. 
For a random pattern at the inputs of the 
multipliers, where signal correlation was not 
present, power saving up to 60-85% was achieved 
in the multiplier as shown in Table 2. Reference 
values of the power dissipation were obtained 
using time delays from Synopsys Power Compiler. 

6. Conclusions 

We have presented a pipelined array 
architecture multiplier. The structure of this array 
maintains the same level of regularity as the 
normal array multiplier. We have presented results 
that show significant improvement in delay and 
power. The regularity of our architecture makes it 
suitable for applying other reducing power 
techniques. In this work we were able to test the 
use of pipelining approach in order to reduce the 
critical path and unnecessary signal transitions that 
are propagated through the array. As we observed, 
our multiplier is more efficient due to the logic 
depth that reduces the glitches along the circuit. 
For a random pattern at the inputs of the multiplier, 
where signal correlation is not present, power 
saving up to 60-85% was achieved in the 
multiplier. 
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