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Airship provides us many attractive applications in aerospace industry including transportation of heavy payloads, 
tourism, emergency management, communication, hover and vision based applications. Hovering control of airship has 
many utilizations in different engineering fields. However, it is a difficult problem to sustain the hover condition 
maintaining controllability. So far, different solutions have been proposed in literature but most of them are difficult in 
analysis and implementation. In this paper, we have presented a simple and efficient scheme to design a multi input 
multi output hybrid PI control scheme for airship. It can maintain stability of the plant by rejecting disturbance inputs to 
ensure robustness. A control scheme based on feedback theory is proposed that uses principles of optimality with 
integral action for hovering applications. Simulations are carried out in MTALAB for examining the proposed control 
scheme for hovering in different wind conditions. Comparison of the technique with an existing scheme is performed, 
describing the effectiveness of control scheme. 

Keywords:  Airship, Dynamic modeling, Hovering, Control law, Robustness, MIMO hybrid PI control scheme. 

1. Introduction 
Vehicles like airships present unique and 

promising solutions for robotics and aviation 
industry that involves a long-endurance and 
autonomous operation. Having their lift with 
buoyancy force, these vehicles require much less 
power than traditional aircraft. With the help of 
renewable energy sources, a controlled flight can 
be maintained for an indefinite period. In radio 
communication and wireless networks, the use of 
airship as a station, keeping its position fixed, can 
provide link similar to the satellite. Major 
applications of LTA include hovering or roving, 
surveillance, telecommunication, remote-sensing, 
etc. Operating the vehicle at 60~70 thousand feet 
height has several more attractive features, making 
it a promising solution for both government 
programs and commercial ventures where it can 
maintain a geostationary location   closer to the 
earth. In order to achieve these objectives, a robust 
guidance and control system capable of auto-
piloting under wide range of atmospheric and wind 
conditions is required.  First, successful design of 
such a system requires an accurate model of 
airship dynamics. A 6 degrees-of-freedom dynamic 
model of a non-rigid airship is used as a basis for 

design of a controller. The model includes all 
inertial, dynamic, aerodynamic, gravitational, 
buoyancy and propulsion forces. It is capable of 
explaining the stability and control performance 
alongwith the flight modes of the airship. 

For the observation oriented applications, 
airship may be able to sustain stationary flight state 
(hover flight) independent of the atmospheric 
disturbances indicated [1]. Recently, many control 
techniques have been applied to solve the hovering 
control problem for different types of airships. 
Hovering flight in turbulent wind cases was initially 
discussed [2]. Whereas, stability and control issues 
for VTOL capable airships in hovering flight were 
investigated [3]. Using the decoupled formulation, 
design of controller for hovering application using 
image feedback with two control loops was realized 
[4]. An image-based visual servoing in a PD error 
feedback scheme was used for automatic hovering 
of an outdoor autonomous airship [5]. This 
technique was used for hover control [6]. The 
station keeping of large high altitude airship is 
suggested [7]. A back stepping control algorithm 
for airship hovering with input saturations is 
proposed [8, 9]. 
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Nomenclature 

rA  = 6x1 Aerodynamics Vector 

longA  = Linearised system matrix for longitudinal motion 

latA  = Linearised system matrix for lateral motion 

a  = Linearised system matrix of plant “airship” 

*a  = Modified system matrix of the airship 

A  = Linearised system matrix of the augmented system 

longB  = Linearised input matrix for longitudinal motion 

latB  = Linearised input matrix for lateral motion 

B  = Linearised input matrix of the augmented system 

b  = Linearised input matrix of airship 

c  = Linearised output matrix of airship 

e  = Error vector between reference input and output vectors of airship 

dF  = 6x1 Dynamic Vector 

G  = 6x1 Gravitational Vector 

polK  = Feedback gain matrix for pole-placement 

optK  = Feedback gain matrix for optimal control 

M  = 6x6  Mass Matrix 

N, E ,  h = North, East and height positions in earth axis system  

n  = No of states matrix of the system  

n  = No of states matrix of the augmented system 

P  = 6x1 Propulsion Vector 

p , q , r  = Airship angular velocities in roll, pitch and yaw respectively  (rad/s) 

Q  = Positive-semi definite constant coefficient matrix in optimal control 

R  = Positive definite constant coefficient matrix in optimal control 

ir  = Reference input vector 

u  = Control input to the plant “airship” 

xu  , ,  v w = Airship linear velocities along X , Y and Z directions in its, ‘Body’ axes 
    system in m/s 
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longu  = Input vector of the longitudinal motion 

latu  = Input vector of the lateral motion 

x  = State vector of the airship dynamics 

longx  = State vector of the longitudinal motion 

latx  = State vector of the lateral motion 

X  = Augmented state vector of airship dynamics 

y  = Linearised output vector of the airship dynamics 

φ , θ , ϕ  = Vehicle’s Euler angles  in Earth Inertial system 

erδ  = Deflection of right elevator 

elδ  = Deflection of left elevator 

txδ  = Thrust perturbations along X-axis 

tzδ  = Thrust perturbations along Z-axis 

rtδ  = Deflection of top rudder 

rbδ  = Deflection of bottom rudder 

tyδ  = Thrust perturbations along Y-axis 

 

This paper presents a simple but efficient 
approach for the stabilization and control of airship 
hover flight. It is evident from [10], airship may 
exhibit oscillatory behavior in some of its modes 
during hovering flight. Keeping in view of vehicle 
dynamics, a two fold controlling strategy is 
introduced. Inner control loop places the poles of 
system at stable location to avoid such oscillations. 
Outer loop performs regulation action in order to 
track hovering reference. The preset position and 
attitude reference tracking is performed in an 
optimal and robust manner, ensuring its asymptotic 
stability. 

2. Dynamic Modeling of the Airship 
The concept of mathematical model used in this 

flight simulation model is basically suggested by 
[10, 11]. It is a full six-degree-of-freedom (6DOF) 
non-linear mathematical model of the airship flight. 
The model describes the dynamics, gravitation, 
propulsion, aerodynamics and control behavior of 
the airship. 

2.1. Some Assumptions and Axes Systems 
For the simulation, two orthogonal axes sets are 

supposed. First axes set is named as ‘Body’ axes 
which is pointing towards the three orthogonal X, Y 
and Z directions and is centered at airship’s centre 
of volume (C.V). The second set of orthogonal 
axes used in the simulation is known as:  ‘Inertial’ 
or ‘Earth’ axes system.  Here X axis is aligned with 
the North direction, Y with the East and Z axis 
points downwards to the centre of Earth. For the 
simplicity, we assume that the body axis system 
coincide with the earth axes system throughout the 
time. The center of volume (C.V) lies on the 
geometrical longitudinal axes and center of gravity 
(C.G) on XZ plane.  

It is proved from research that LTA vehicles 
behave much like a mass with forces and moments 
applied to it. The simplified format of the equation 
is shown below: 
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2.1.1. The Mass Matrix M 
In comparison to the aircraft simulation, 

additional terms that are specific to buoyant 
vehicles are incorporated in mass matrix. These 
are called ‘virtual’ or ‘added’ masses and inertias. 
These terms arise due to the reason that vehicle 
mass has same order of magnitude as mass of the 
displaced air. Modern aerodynamic stability 
derivative notation is used here to denote these 
terms. Keeping in view the vehicle’s symmetry, 
mass matrix can be written: 

The elements of matrix can be calculated 
according to the procedure outlined [10, 11]. 
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      (2) 

2.1.2. The Dynamic Vector  dF

It is the 6x1 column matrix that contains the 
dynamic terms associated with inertial velocities 

 , v , w , p , q and r and can be expressed as: xu

T
654321d ]ffffff[F =  (3) 

Its dynamic terms may be formulated in 
accordance with procedure proposed by [12] and 
[13]. 

2.1.3. The Aerodynamics Vector : rA

It is a 6x1 column matrix that contains the 
aerodynamic forces and moments. In practice, the 
aerodynamic vector is written as below: 

[ ]TNMLZYXr AAAAAAA =             (4) 

In body axis system, , ,  are total 
aerodynamic forces on X, Y, Z axes and 

, ,  are total aerodynamic moments 
about X, Y, Z axes, respectively. 

XA YA ZA

LA MA MA

The aerodynamic forces and moments can be 
estimated either by wind tunnel tests performed by 
[10, 11] or from the geometrical analytical 
approaches of [14, 15]. 

2.1.4. The Gravity and Buoyancy Vector G 
It is 6x1 column matrix that contains the terms 

associated with gravitational and buoyancy forces 
and moments and is given by: 
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W and B are the total weight and buoyancy force 
available in the vehicle.  are elements of 

direction cosine matrix which can be found by well 
known Quaternion technique. 

ijλ

2.1.5. The Propulsion Vector P 
The 6x1 column matrix containing the terms 

associated with the propulsive forces and moments 
is: 

T
propproppropproppropprop ]N,M,L,Z,Y,X[P = (6) 
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where , ,  are total thrust along 

X, Y, Z axes and , ,  are total 

thrust moment about X, Y, Z axes, respectively. 

propX propY propZ

propL propM propN

The derivation of the mathematical expressions 
making each element of   P depends upon 
propulsion system installed on the vehicle. 
Derivation of propulsion vector for one particular 
case is investigated by [16]. 

2.2. Linearised Equations of Motion  
The model described above may be 

considerably simplified when it is assumed that the 
motion of the airship is constrained to the small 
perturbations about the trimmed equilibrium flight 
condition. Following the common practice, we 
assume that this motion is further divided into 
decoupled longitudinal and lateral motion according 
to [17].  

2.2.1. Longitudinal Equations 
Let us assume state vector for the longitudinal 

motion: 

[ T
xlong qwu  x θ= ]

]

 (7) 

and input vector for this motion 

[ T
long tztxeler  u δδδδ=  (8) 

Where elements of input vector are the right 
elevator deflection, left elevator deflection, thrust 
perturbations along X and thrust perturbations 
along Z axis, respectively. Then the longitudinal 
state equation can be written as: 

longlonglonglonglong uB  x A x +=  (9) 

Simplified form of  and  matrices are 

given below: 
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It shows that a small perturbation is added to 
the longitudinal equations of motion. 

q  =θ    (12) 

2.2.2. Lateral Equation 
Similarly, state vector for the lateral motion is: 

[ ]Tlat rpv  x φ=    (13) 

and input vector for lateral motion is: 

[ ]Tlat tyrbrt  u δδδ=    (14) 

Where elements of input vector are the top rudder 
deflection angle, bottom rudder deflection angle 
and thrust perturbations along Y direction, 
respectively. Then the lateral state equation can be 
written as: 

latlatlatlatlat uB  x A x +=    (15) 

Simplified form of  and  matrices may 
be written as: 
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Similar to longitudinal equations, lateral 
equations of motion include additional small 
perturbed equation 

p  φ =    (18) 
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Figure 1. Airship hover controller placing specific poles, optimally controlling hover flight using integral action. 

 

3. Control Law Design 
Suppose we have the configuration for control 

action as shown in Fig.1. In this figure,  
represents airship linearised state space model, 
with  as its output.  and  represent gain 

matrices for pole placement and optimal control 
gain matrices. Symbols, r, e, u, x, y, represent 
reference, error, input, state and output vectors in 
the figure, respectively. Pole placement is applied 
on system states at inner most loop and outer loop 
performs reference tracking. Optimal gains are 
applied on the augmented vector of states and 
integrated errors in this hybrid control scheme. It is 
to note that it is a multi input and multi output 
(MIMO) hybrid PI control strategy, proposed for 
airship 6 DOF dynamic model. 

buaxx +=

c polK optK

In order to derive control law for airship in the 
hover, first we write the feedback of the inner most 
loop. Actually we want some of the poles to be 
placed at its more stable region which are 
producing oscillations in the system dynamics. 
These poles, due to their presence near the 
stability boundary, exhibit oscillatory behavior only 
at its hover condition indicated by Gomes and 
Cook. As the state feedback is possible according 
to [16], we place these poles to the desired stable 
position. The modified system matrix after inner 
most feedback loop is: 

pol
* bKaa −=  (19) 

where  is the modified system matrix. *a

For the purpose of hover control, we can design 
optimal hover controller with integral action using 
outer feedback loop in the light of theory explained 
by [19-21]. If dynamic system has output equation,  

cxy =    (20) 

We can find optimal hover controller 
 minimizing the performance 

function. 
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The error is expressed as: 
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where  is the reference input. ir

For the MIMO systems, we have  
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If n is number of states, b is number of 
reference inputs and m is the number of inputs of 
the dynamic system, then  and . bbn ×ℜ∈ nbc ×ℜ∈

Using the output equation and denoting: 

refxe = , 

cxnrynrx iref −=−=    (23) 

If we augment the system dynamics buxax +=  
with this equation, we have: 

buxax * += ,  cxy =  
cxnrynrx iiref −=−= . 

That is, 
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Where,  is positive-semi definite constant 
coefficient matrix and   is positive 
definite constant coefficient matrix. 

ccQ ×ℜ∈
mmR ×ℜ∈

By using the quadratic performance function, 
one obtains the Hamiltonian function: 
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From this, we have: 
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One can find the control law using the first order 
necessary condition for optimality. 

We then have the following form of an optimal 
control algorithm: 
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The solution of Hamilton-Jacobi-Bellman partial 
differential equation 
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is satisfied by quadratic return function 
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optK ×ℜ∈  is symmetric matrix. 
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which gives the unknown symmetric matrix . 

The above equation needs to be solved. 
optK

Controller is found using the equations (27) and 
(29) as: 
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From , we can have,  exref = ∫= edtxref

we have optimal control law with integral action as: 

Thus the control law for the hovering control of 
an airship can be written as: 
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4. Hovering Control of an Airship 
We begin our investigations with the state 

space equation: 

buaxx +=  ,   00 x)t(x =

The states for this system are: 

[ ]Tx hENrpvqwux ϕφθ=  

Where, , ,  are the linear velocities along X, 
Y, Z axes 
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p , q , r  are the angular velocities 

around X,Y,Z axes, φ , , θ ϕ  are attitude angles 
about X, Y, Z axes and N, , h are the position 
variables in earth axes system which is supposed 
to be coincide with XYZ axes system. 

E

Control input is,    
                   [ Ttyrbrttztxeleru δδδδδδδ= ]

Where, elements are right elevator deflection, left 
elevator deflection, thrust along X axis, thrust along 
Z axis, top rudder deflection, bottom rudder 
deflection and thrust along Y direction, respectively. 

It is evident from the work presented by Cook 
that the linearised model of airship is approximately 
similar to its nonlinear one. So we can use 
Longitudinal-Lateral dynamics to represent its 
state-space model indicated by [18]. 
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It is to noted that we have included additional 
approximated dynamic equations in the above 
formulation : 

r  =ϕ ,  ,  xu  N = vE = ,   w  h =

By proper choice of , we can place some of 

the marginally stable poles to the desired stable 
region:  

polfK

pol
* bKaa −=

where,  a*  is the modified system matrix. 

For the implementation of optimal hover control 
with integral action, error vector is expressed in 
terms of reference inputs and output equation as: 

yre i −= , where: 
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We get an augmented model: 
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Minimization of quadratic performance function 
gives the above mentioned controller: 
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5. Simulation and Results 
5.1. Simulation Strategy and Airship Parameters 

The initial and final reference values of the , v 
w, p, q, r,φ , ,

xu
θ ϕ , ,x y , are given at the start of 

simulation using the basics stated by [21] and [22]. 
Body axes system is assumed to coincide with 
Earth axes system all the time. 

z

5.2. Example Airship Parameters Selected: 

• Total Mass = 41500 Kg 

• Length = 100 m 

• Max Diameter = 25 m 

• 4 control surfaces (2 Rudders & 2 Elevators) in 
“+” fashion. 

• 3 Propellers (In the X, Y and Z directions). 

5.3. Simulation Time 
Total simulation period selected in this work is 

equal to 150 seconds. 

5.4. Simulation Tool: MATLAB 7  

5.5. Simulation Results 

No Wind Case 
First the system is tested in hover flight with no 

wind (suppose at no wind, wind speed = 0.2m/s). 
Airship starts from the initial position, 
[ ] [ ] m101010101001hEN TT −=ϕφθ  
and becomes stationary at its given reference 
position, 
[ ] [ ] m1000000hEN TT −=ϕφθ  

The purpose of the simulation is to show the 
ability of the controller to sustain the reference 
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position for the airship. Simulation results are 
shown in the Fig.2. It is clear from the results that 
the proposed controller takes the airship to a stable 
position in almost 35 seconds, achieving the airship 
hovering flight successfully. It can also be seen that 
the initial transitions in the position and attitude 
variables are due to the presence of aerodynamic 
vector in the dynamic model of airship. 

5.6. Light Wind Case 
System is tested in a very light constant wind 

(1.0m/s) flowing opposite to the X direction.  Airship 
starts from the initial position, 

an
d becomes stationary at the given reference 
position, 

. 
Simulation results are shown in the Fig.3. It is 
evident from the figures that the proposed 
controller takes the airship to a stable position in 
almost 30 seconds, sustaining the airship hovering 
flight. Increased action of the aerodynamic forces 
can be seen in the initial part of the response as 
compared to the no wind case. Improvement in the 
settling time is due to the increased effectiveness 
of the control surfaces like rudders and elevators. 

[ ] [ m101010101001hEN TT −=ϕφθ ]

][ ] [ m1000000hEN TT −=ϕφθ

 
Figure 2. Airship attitude and position variables 

( ) in hovering flight at no wind case 
for MIMO Hybrid PI control scheme. 

hE,N,,φ,θ, ϕ

 
Figure 3. Airship attitude and position variables 

( ) in hovering at light wind case. hE,N,,φ,θ, ϕ

5.7. Normal Wind Case1 
System is tested in a normal constant wind 

(3.0m/s) flowing opposite in the X direction. Airship 
starts from the initial position, 
[ ] [ ] m101010101001hEN TT −=ϕφθ  
and becomes stationary at the reference position, 
[ ] [ ] m1000000hEN TT −=ϕφθ . 
Simulation results are shown in the Fig. 4. It can be 
seen from the figures that the controller takes the 
airship to a stationary position in normal wind case 
within 25 seconds. This is the usual wind scenario 
facing the airship. It is clear from the response that 
the suggested controller achieves its goal 
successfully 

 
Figure 4. Airship attitude and position variables 

( ) in hovering flight at normal wind 
case. 

hE,N,,φ,θ, ϕ
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5.8. Normal Wind Case2: 
System is tested in a normal constant wind 

(3.0m/s) flowing opposite to the X direction. Airship 
starts from the different initial position, 

and becomes stationary at its given reference 
position, 

.   
Simulation results are shown in the Fig.5. It is 
evident from the simulation results that the 
suggested controller takes the airship to a pre 
defined stationary position even starting from 
different initial points, which shows the 
effectiveness of the control design. 

[ ] [

[ ] [ m1000000hEN TT −=ϕφθ

]

 

m201010202002hEN TT −−−=ϕφθ

]

 
Figure 5. Airship attitude and position variables 

( ) in hovering flight at normal wind 
with different starting point . 

hE,N,,φ,θ, ϕ

5.9. High Wind with Turbulence Case 
System is tested in a high constant wind 

(8.0m/s) flowing opposite to the X direction with 
turbulence in all plant inputs. Turbulence is 
supposed to be a Gaussian noise having standard 
deviation equal to 20. This is the maximum 
disturbance estimated in any state [9]. Airship 
starts from the initial position, 

and becomes stationary at the reference position, 
. 

Simulation results are shown in the Fig.6. We can 
see from the figures that the hover controller tracks 
efficiently its reference values even in the presence 
of large disturbance noise in all control inputs, 
simultaneously. This explains effectiveness and 
robustness in the proposed control design. 

[ ] [ m201010202002hEN TT −−−=ϕφθ ]

][ ] [ m1000000hEN TT −=ϕφθ

Figure 6. Airship attitude and position variables 
( ) in hovering flight at high wind 
with disturbance input case. 

hE,N,,φ,θ, ϕ

5.10. Controllability, Stabilizibility, Robustness 
and Comparison 

Its controllability matrix can be checked by, 

  b]a...babaab[bC 1132
1 =

  . 12)(CRank 1 =

System is completely controllable. 

Similarly, for the augmented system, the 
controllability by, 

  B]A...BABAAB[BC 1732
2 =

18)(CRank 2 = . 

It is completely controllable. 

Eigen values of optimal system in normal wind 
are as: 

-1.0571,  -0.5297 + 0.9076i,  -0.5297 - 0.9076i,  -
0.8928,  -0.4483 + 0.7609i,  -0.4483 - 0.7609i,  

-0.5248,  -0.2723 + 0.4316i,  -0.2723 - 0.4316i,  -
0.4016,  -0.2230 + 0.3338i,  -0.2230 - 0.3338i,  

-0.2781,  -0.1968 + 0.2283i,  -0.1968 - 0.2283i,  -
0.2287 + 0.1664i,  -0.2287 - 0.1664i,  -0.0015.    

In this system it can be seen that there exist the 
state feedback law and all poles are in the left half 
plane, so the system is stabilizable. 
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As this system is controllable and stable, it can 
be viewed that no zero occur at s = 0 that may 
cancel the integrator which has transfer function 
equal to 1/s, so it can be said that in this 
configuration, the output y  will track asymptotically 
any step reference input even with the presence of 
disturbance or plant parameter variations, thus 
satisfying the robustness in the hover control 
scheme suggested by [19]. 

5.11. Comparison of Results 
In the control scheme presented by [9], attitude 

and position stabilization occur in 10-50 seconds in 
no wind scenario. In normal wind (3.0m/s), 
stabilization in saturated case occurs in 35-150 
seconds. These results are taken neglecting the 
aerodynamic vector from the model. In our case, 
attitude and position stabilization occur in about 10-
40 sec in all wind cases without excluding the 
aerodynamic vector from the model. This can be 
considered as improvement in the control design. 
Stabilization time may be further improved with 
more proper choice of feedback and Q, R matrices. 

Similarly for the control scheme presented by 
[8], although aerodynamic vector is included but 
the control action performed is less smooth as 
compared with the design suggested in this paper. 

6. Conclusions 
Hovering flight of airship can be used for 

observation oriented applications. To maintain 
airship hovering capability, a simple but efficient 
control scheme is required which can be easily 
analyzed, modified with the help of some software 
tools like MATLAB. In the proposed control 
scheme, we have used the principles of linearity to 
design a control law that satisfies its robustness by 
rejecting any disturbance input in the plant. The 
hybrid control scheme designed here uses the 
integration action, state feedback and optimal 
gains which may be easily implemented with the 
help of analog and digital computers. Simulation 
results and their comparison can be viewed as 
improvement in the proposed control design. 
Results can be tuned further by more proper 
choice of feedback matrices. The suggested 
scheme shows that it is a simple and effective 
design for the airship hover control applications. 
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