The Nucleus 48, No. 3 (2011) 187-189

The Nucleus A Quarterly Scientific Journal of Pakistan Atomic Energy Commission NCLEAM, ISSN 0029-5698

ON CARTESIAN PRODUCT OF CYCLES AND PATHS

*A. D. JUMANI

Department of Mathematics, Shah Abdul Latif University, Khairpur, Pakistan

(Received July 27, 2011 and accepted in revised form September 06, 2011)

Let $G\Box H$ denote the Cartesian product of the graphs G and H and let $\gamma(G\Box H)$ denote the domination number of the Cartesian product of the two simple graphs G and H. In this note, the domination number of the Cartesian product $C_3 \Box P_n$, $C_4 \Box P_n$ and $C_5 \Box P_n$ is determined; that is $\gamma(C_3 \Box P_n) = n$, $\gamma(C_4 \Box P_n) = n$ where $n \ge 1$ and $\gamma(C_5 \Box P_n) = \left| \frac{5n-1}{3} \right|$ where $n \ge 4$.

Keywords : Cartesian product, Domination number, Vizing's conjecture

1. Introduction

Motivation to study graph theory is its ability to represent many situations in life as graph-theoretic models; whether they are natural structure or manmade, like biology, computer science, economics, engineering informatics, linguistics, mathematics, medicine, social science etc. Inspiration to study the domination number of a graph is to make important strategic decisions like placing some service stations in a large network.

A graph G is a triple consisting of a vertex set V(G) that is V, an edge set E(G) that is E and a relation that associates with each edge two vertices called endpoint. A graph is simple if it has no loops and no multiple edges. A set of vertices D of a simple graph G is called dominating set if every vertex $w \in V(G) - D$ is adjacent to some vertex $V \in D$. The domination number of a graph G, denoted by $\gamma(G)$, is the cardinality of a smallest dominating set of a graph G. A dominating set D with $|D| = \gamma(G)$ is called the minimum dominating set [1]. The Cartesian product G_DH of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a,x)(b,y) \in E(G \times H)$ whenever x = yand $ab \in E(G)$ or a = b and $xy \in E(H)$. For $x \in V(H)$, set $G_x = G \times \{x\}$ and for $a \in V(G)$, set $H_a = \{a\} \times H$,

the sets G_x and H_a are called layers of G or H respectively [2].

On domination theory of Cartesian product of graphs; there are two fundamental problems, one is the conjecture of Vizing, which is still open, stated in [2,3] such as $\gamma(G \square H) \ge \gamma(G)\gamma(H)$ that is the domination number of the Cartesian product of the two graphs is at least the product of their domination numbers and for many partial results see [4, 5]. The other problem is to determine the domination number of certain Cartesian products of graphs [4, 7, 8]. Also this problem seems to be a difficult one and even for a subgraph of $D = \{0 \times J\} \cup \{2 \times L\}$ is NP-complete and the problem itself is also open.

2. Main Results

 $\begin{array}{lll} \underline{Lemma \ 1} & : \ let \ n \ be \ an \ integer \ with n \ge 1, \ for \\ C_3 \square P_n \,, \ the \ domination \ set D = \{0 \times J\} \cup \{2 \times L\} \,; \\ where \ J = \{j \mid j \equiv 0 (mod \ 2); j \ge 0\} & and \\ L = \{l \mid l \equiv 1 (mod \ 2); l \ge 0\} & with \ 0 \le j \le n & and \\ 0 \le l \le n-1 \,. \end{array}$

 $\frac{Proof}{C_3}$: Let (0,j) and (2,l) be the coordinate pairs of the domination set points Cartesian product of C_3 and P_n , where $n \ge 1$. It is shown here that

^{*} Corresponding author : alidino.jumani@salu.edu.pk

 $D = \{0 \times J\} \cup \{2 \times L\}$, where D is the domination set. Let G_x be a layer of the Cartesian product of C_3 and P_n where $x \in H$ and also let H_v be a layer of the Cartesian product of C_3 and P_n , where $y \in G$. Domination set points in layer G_x will take the form of $J = \{j \mid j \equiv 0 \pmod{2}; j \ge 0\}$ and $L = \{I \mid I \equiv 1 \pmod{2}; I \ge 0\}$. The domination set D is now union of the Cartesian product of the sets {0} and $\{J\}$, that is $\{0 \times J\}$; $\{2\}$ and $\{L\}$, that is $\{2 \times L\}$; $D = \{0 \times J\} \cup \{2 \times L\}$. Obvious restriction are imposed on ordinate indices is j < n and l < n, which leads to the intervals on indices as $0 \le j \le n$ and $0 \le l \le n-1$.

Lemma 2: [7, 9]: $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$

<u>Theorem 3</u> : For any integer n > 0, $\gamma(C_3 \Box P_n) = n$

Proof: Let D be the dominating set containing the vertices of the form (0, j) and (2, l), where $j \equiv 0 \pmod{2}$ and $l \equiv 1 \pmod{2}$ with $0 \le j$ and $l \le n-1$. From the lemma 1 above the domination set D is an immediate consequence of the construction by Cartesian product of the sets 0 with j and 2 with I respectively and easy to check that |D| = n.

Now, in continuation with this, it is proved here that the Cartesian product of C_3 and P_n , such that $\gamma(C_3 \Box P_n) \ge n$, whenever $n \ge 1$. Let $x \in V(H)$, the set $G_x = G \Box \{x\}$ is a layer of G i.e., G- layer. In Cartesian product of $C_3 \Box P_n$ every single G-layer of the product is C_3 and by lemma 2 above $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$ and for each G-layer the domination set consists of a single vertex, that is, $\gamma(P_3) = 1$. Hence each G-layer of the product contains only one vertex from the domination set D; consequently n of the G-layers contains n vertices from the domination set and |D| = n, which proves that for any integer $n \ge 0$, $\gamma(C_3 \Box P_n) = n$.

<u>Lemma 4</u>: Let n be an integer with $n \ge 2$, for $C_4 \Box P_n$ the domination set $D = \{0 \times J\} \cup \{2 \times L\}$;

where $J = \{j \mid j \equiv 0 \pmod{2}; j \ge 0\}$, and $L = \{l \mid l \equiv 1 \pmod{2}; l \ge 0\}$ with $0 \le j, l \le n$.

Proof : Let (0, j) and (2, l) be the coordinate pairs of the domination set of Cartesian product of the cycle $C_4 \ \text{ and a path} \, P_n \, , \, \text{where } n \geq 2 \ . \, \text{It is shown here}$ that the domination set $D = \{0 \times J\} \cup \{2 \times L\}$. Let $\ G_{\chi}$ be a layer of the Cartesian product of cycle C_4 and path P_n , where $\ x \in H$ and let H_v be also a layer of the Cartesian product of cycle C_4 and path P_n where $y \in G$. Domination set points in the layer H_v will take the form of $j \equiv 0 \pmod{2}$, that is, we say that $J = \{j \mid j \equiv 0 \pmod{2}; j \ge 0\}$, and $I \equiv 1 \pmod{2}$ that is, we say that $L = \{I \mid I \equiv 1 \pmod{2}; I \ge 0\}$. The domination set D is now union of the Cartesian product of the sets 0 and J that is $\{0 \times J\}$ and 2 and L that is $\{2 \times L\}$; that is $D = \{0 \times J\} \cup \{2 \times L\}$. Obvious restrictions are imposed on ordinate indices j and l, which leads to the intervals on indices as $0 \leq j, l \leq n$.

<u>Theorem 5</u> : For any integers $n \ge 2$, $\gamma(C_4 \Box P_n) = n$.

<u>Proof</u> : Same line of argument is to be taken as in proving theorem 3. Let D be the dominating set containing the vertices of the form (0, j) and (2, l) where $j \equiv 0 \pmod{2}$, and $l \equiv 1 \pmod{2}$ with $0 \le j, l \le n$. The set D is an immediate consequence of the construction by Cartesian product of the sets 0 with J and 2 with L respectively and easy to check that |D| = n again.

Now, in continuation with this, it is proved here that the Cartesian product of C_4 and P_n , such that $\gamma(C_4 \Box P_n) \geq n$, whenever $n \geq 2$. Let $x \in V(H)$, the set $Gx = G \Box \{x\}$ is a layer of G i.e., G- layer. In Cartesian product of $C_4 \Box P_n$ every single G-layer of the product is C_4 and by lemma 2 above $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$ and for each G-layer the domination set consists of a single vertex, that is, $\gamma(P_4) = 2$. Hence each G-layer of the product contains only one vertex from the domination set D; consequently n of the G-layers contains n vertices from the domination set and $\left| D \right| = n$, which proves that for any integers $n \geq 2$, $\gamma(C_4 \Box P_n) = n$.

 $\begin{array}{l} \underline{\text{Lemma 6}} : \text{ let } n \text{ be a positive integer with } n \geq 4 \text{ for } \\ C_5 \square P_n \text{ , the domination set} \\ D = \{0 \times J\} \cup \{2 \times L\} \cup \{4 \times Q\} \text{ ; where} \\ J = \{j \mid j \equiv 0 (mod \ 2); j \geq 0\} \text{ ,} \\ L = \{l \mid l \equiv 1 (mod \ 2); l \geq 0\} \text{ , and} \\ Q = \{q \mid q \equiv 0 (mod \ 2); q \geq 0\} \text{ .} \end{array}$

<u>Proof</u>: Let (0, j), (2, l) and (4, q) be the coordinate pairs of the domination set points Cartesian product of $C_5 \,and \, P_n$ where $n \geq 2$. It is shown here that $D = \{0 \times J\} \cup \{2 \times L\} \cup \{4 \times Q\}$, where D is the domination set. Let Gx be a layer of the Cartesian product of cycle C_5 and path P_n where $x \in H$ and let H_v be also a layer of the Cartesian product of C_5 and P_n where $y \in G$. Domination set points in the layer $\rm H_{\rm v}$ will take the form of $j \equiv 0 \pmod{2}$, that is $J = \{j \mid j \equiv 0 \pmod{2}; j \ge 0\}$, and $I \equiv 1 \pmod{2}$, that is $L = \{I \mid I \equiv 1 \pmod{2}; I \ge 0\}$, and similarlv $q \equiv 0 \pmod{2}$ that is $Q = \{q \mid q \equiv 1 \pmod{2}; q \ge 0\}$. The domination set D is now union of the Cartesian product of the sets 0 and J, $\{0 \times J\}$; 2 and L, $\{2 \times L\}$; 4 and Q, $\{4 \times Q\}$; that is $D = \{0 \times J\} \cup \{2 \times L\} \cup \{4 \times Q\}$. Obvious restrictions are imposed on ordinate indices are j < n, l < n and q < n which leads to the intervals on indices as $0 \le j \le n$, $0 \le l \le n$ and also $0 \le q \le n$.

 $\label{eq:product} \begin{array}{l} \underline{\text{Theorem 7}} : \quad \text{For any integers } n \geq 4\,, \\ \gamma(C_5 \square P_n) = \left\lfloor \frac{5n-1}{3} \right\rfloor \end{array}$

<u>Proof</u>: Let D be the domination set containing the vertices of the form (0,j), (2, I) and (4,q), where $j \equiv 0 \pmod{2}$, $I \equiv 1 \pmod{2}$ and $q \equiv 0 \pmod{2}$. By lemma 6 above, D is a construction of the Cartesian product of the sets 0 with J and 2 with L and 4 with Q respectively.

Now, in continuation with this, it is proved here that the Cartesian product of the cycle C_5 and a path P_n , such that $C_5 \square P_n$ the domination set of the product is $\gamma(C_5 \square P_n) = \left\lfloor \frac{5n-1}{3} \right\rfloor$ whenever $n \ge 4$;

using the mathematical induction on n and starting with the initial n = 4 we have $\gamma(C_5 \Box P_4) = 6$ which

holds. Furthering to the k_{th} step we have $\gamma(C_5 \Box P_k) = \left\lfloor \frac{5k-1}{3} \right\rfloor$ the relation also holds for the k_{th} step. Then going toward the inductive step k+1, and we have $\gamma(C_5 \Box P_{k+1}) = \left\lfloor \frac{5k+4}{3} \right\rfloor$ which holds and proves the theorem.

3. Conclusion

Three new results are presented in this note, namely, $\gamma(C_3 \Box P_n) = n$, $\gamma(C_4 \Box P_n) = n$ and

 $\gamma(C_5 \Box P_k) = \left\lfloor \frac{5k-1}{3} \right\rfloor$. As more general results of the type are NP-complete hence partial results are

the type are NP-complete hence partial results are thee only way have some structure in the domination theory of Cartesian products.

References

- S. Klavzar and N. Seifter, Discrete Applied Mathematics 59 (1995) 97.
- [2] V. G. Vizing, Sistemy 9 (1963) 30.
- [3] V. G. Vizing, Uspehi Mat. Nauk **23** (1986) 117.
- [4] M. El-Zahar and C. M. Pareek, Ars Combin. 31 (1991) 223.
- [5] R.J. Faudree and R. H. Schelp, Congr. Numer. **79** (1990) 29.
- [6] M. S. Jacobson and L. F. Kinch, J. Graph Theory **10** (1986) 97.
- [7] S. Alikhani and Yee-Hock Peng, International Journal of Mathematics and Mathematical Sciences doi:10.1155/2009/542040, (2009).
- [8] S. Gravier and M. Mollard, On domination numbers of Cartesian of Paths, Discrete Applied Mathematics 80, No. 2-3 (1997) 247.
- [9] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, Boston, Mas. USA (2005).