ON CARTESIAN PRODUCT OF CYCLES AND PATHS

*A. D. JUMANI
Department of Mathematics, Shah Abdul Latif University, Khairpur, Pakistan

(Received July 27, 2011 and accepted in revised form September 06, 2011)

> Let $G \square H$ denote the Cartesian product of the graphs G and H and let $\gamma(G \square H)$ denote the domination number of the Cartesian product of the two simple graphs G and H. In this note, the domination number of the Cartesian product $C_{3} \square P_{n}, \quad C_{4} \square P_{n}$ and $C_{5} \square P_{n}$ is determined; that is $\gamma\left(C_{3} \square P_{n}\right)=n, \quad \gamma\left(C_{4} \square P_{n}\right)=n$ where $n \geq 1$ and $\gamma\left(C_{5} \square P_{n}\right)=\left\lfloor\frac{5 n-1}{3}\right\rfloor$ where $n \geq 4$.

Keywords : Cartesian product, Domination number, Vizing's conjecture

1. Introduction

Motivation to study graph theory is its ability to represent many situations in life as graph-theoretic models; whether they are natural structure or manmade, like biology, computer science, economics, engineering informatics, linguistics, mathematics, medicine, social science etc. Inspiration to study the domination number of a graph is to make important strategic decisions like placing some service stations in a large network.

A graph G is a triple consisting of a vertex set $V(G)$ that is V, an edge set $E(G)$ that is E and a relation that associates with each edge two vertices called endpoint. A graph is simple if it has no loops and no multiple edges. A set of vertices D of a simple graph G is called dominating set if every vertex $w \in V(G)-D$ is adjacent to some vertex $\mathrm{V} \in \mathrm{D}$. The domination number of a graph G , denoted by $\gamma(\mathrm{G})$, is the cardinality of a smallest dominating set of a graph G. A dominating set D with $|\mathrm{D}|=\gamma(\mathrm{G})$ is called the minimum dominating set [1]. The Cartesian product $\mathrm{G} \square \mathrm{H}$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a, x)(b, y) \in E(G \times H) \quad$ whenever $x=y \quad$ and $a b \in E(G)$ or $a=b$ and $x y \in E(H)$. For $x \in V(H)$, set $G_{x}=G \times\{x\}$ and for $a \in V(G)$, set $H_{a}=\{a\} \times H$,
the sets G_{x} and H_{a} are called layers of G or H respectively [2].

On domination theory of Cartesian product of graphs; there are two fundamental problems, one is the conjecture of Vizing, which is still open, stated in $[2,3]$ such as $\gamma(\mathrm{G} \square \mathrm{H}) \geq \gamma(\mathrm{G}) \gamma(\mathrm{H})$ that is the domination number of the Cartesian product of the two graphs is at least the product of their domination numbers and for many partial results see [4, 5]. The other problem is to determine the domination number of certain Cartesian products of graphs [4, 7, 8]. Also this problem seems to be a difficult one and even for a subgraph of $\mathrm{D}=\{0 \times \mathrm{J}\} \cup\{2 \times \mathrm{L}\}$ is NP-complete and the problem itself is also open.

2. Main Results

Lemma 1 : let n be an integer with $n \geq 1$, for $\mathrm{C}_{3} \square \mathrm{P}_{\mathrm{n}}$, the domination setD $=\{0 \times \mathrm{J}\} \cup\{2 \times \mathrm{L}\}$; where $J=\{j \mid j \equiv 0(\bmod 2) ; j \geq 0\} \quad$ and $L=\{I \mid I \equiv 1(\bmod 2) ; I \geq 0\} \quad$ with $0 \leq j \leq n \quad$ and $0 \leq \mathrm{l} \leq \mathrm{n}-1$.

Proof : Let $(0, j)$ and ($2, \mathrm{I}$) be the coordinate pairs of the domination set points Cartesian product of C_{3} and P_{n}, where $\mathrm{n} \geq 1$. It is shown here that

[^0]$\mathrm{D}=\{0 \times \mathrm{J}\} \cup\{2 \times \mathrm{L}\}$, where D is the domination set. Let G_{x} be a layer of the Cartesian product of C_{3} and P_{n} where $x \in H$ and also let H_{y} be a layer of the Cartesian product of C_{3} and P_{n}, where $y \in G$. Domination set points in layer G_{x} will take the form of $J=\{j \mid j \equiv 0(\bmod 2) ; j \geq 0\} \quad$ and $L=\{I \mid I \equiv 1(\bmod 2) ; I \geq 0\}$. The domination set D is now union of the Cartesian product of the sets $\{0\}$ and $\{\mathrm{J}\}$, that is $\{0 \times \mathrm{J}\} ;\{2\}$ and $\{\mathrm{L}\}$, that is $\{2 \times \mathrm{L}\}$; $D=\{0 \times J\} \cup\{2 \times \mathrm{L}\}$. Obvious restriction are imposed on ordinate indices is $\mathrm{j}<\mathrm{n}$ andl $<\mathrm{n}$, which leads to the intervals on indices as $0 \leq j \leq n$ and $0 \leq \mathrm{I} \leq \mathrm{n}-1$.

Lemma 2: $[7,9]: \gamma\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lceil\frac{\mathrm{n}}{3}\right\rceil$
Theorem 3 : For any integer $n>0, \gamma\left(C_{3} \square P_{n}\right)=n$
Proof: Let D be the dominating set containing the vertices of the form $(0, j)$ and $(2, I)$, where $\mathrm{j} \equiv 0(\bmod 2) \quad$ and $\quad \mathrm{I} \equiv 1(\bmod 2) \quad$ with $0 \leq \mathrm{j}$ and $I \leq n-1$. From the lemma 1 above the domination set D is an immediate consequence of the construction by Cartesian product of the sets 0 with jand 2 with I respectively and easy to check that $|\mathrm{D}|=\mathrm{n}$.

Now, in continuation with this, it is proved here that the Cartesian product of C_{3} and P_{n}, such that $\gamma\left(C_{3} \square P_{n}\right) \geq n$, whenever $n \geq 1$. Let $x \in V(H)$, the set $G_{x}=G \square\{x\}$ is a layer of G i.e., G - layer. In Cartesian product of $C_{3} \square P_{n}$ every single G-layer of the product is C_{3} and by lemma 2 above $\gamma\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lceil\frac{\mathrm{n}}{3}\right\rceil$ and for each G-layer the domination set consists of a single vertex, that is, $\gamma\left(\mathrm{P}_{3}\right)=1$. Hence each G-layer of the product contains only one vertex from the domination set D; consequently n of the G-layers contains n vertices from the domination set and| $\mathrm{D} \mid=\mathrm{n}$, which proves that for any integer $n \geq 0, \gamma\left(C_{3} \square P_{n}\right)=n$.

Lemma 4 : Let n be an integer with $\mathrm{n} \geq 2$, for $\mathrm{C}_{4} \square \mathrm{P}_{\mathrm{n}}$ the domination set $\mathrm{D}=\{0 \times \mathrm{J}\} \cup\{2 \times \mathrm{L}\}$;
where $\mathrm{J}=\{\mathrm{j} \mid \mathrm{j} \equiv 0(\bmod 2) ; \mathrm{j} \geq 0\}$, and
$L=\{I \mid I \equiv 1(\bmod 2) ; I \geq 0\}$ with $0 \leq j, I \leq n$.
Proof : Let $(0, j)$ and $(2, I)$ be the coordinate pairs of the domination set of Cartesian product of the cycle C_{4} and a path P_{n}, where $\mathrm{n} \geq 2$. It is shown here that the domination set $D=\{0 \times J\} \cup\{2 \times \mathrm{L}\}$. Let G_{x} be a layer of the Cartesian product of cycle C_{4} and path P_{n}, where $x \in H$ and let H_{y} be also a layer of the Cartesian product of cycle C_{4} and path P_{n} where $y \in G$. Domination set points in the layer H_{y} will take the form of $j \equiv 0(\bmod 2)$, that is, we say that $J=\{j \mid j \equiv 0(\bmod 2) ; j \geq 0\}, \quad$ and $\quad I \equiv 1(\bmod 2)$ that is, we say that $L=\{| | I \equiv 1(\bmod 2) ; I \geq 0\}$. The domination set D is now union of the Cartesian product of the sets 0 and J that is $\{0 \times \mathrm{J}\}$ and 2 and L that is $\{2 \times \mathrm{L}\}$; that is $\mathrm{D}=\{0 \times \mathrm{J}\} \cup\{2 \times \mathrm{L}\}$. Obvious restrictions are imposed on ordinate indices j and I, which leads to the intervals on indices as $0 \leq \mathrm{j}, \mathrm{I} \leq \mathrm{n}$.

Theorem 5 : For any integers $\mathrm{n} \geq 2, \gamma\left(\mathrm{C}_{4} \square \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}$.
Proof : Same line of argument is to be taken as in proving theorem 3. Let D be the dominating set containing the vertices of the form ($0, \mathrm{j}$) and ($2, \mathrm{I}$) where $j \equiv 0(\bmod 2), \quad$ and $\quad l \equiv 1(\bmod 2) \quad$ with $0 \leq \mathrm{j}, \mathrm{I} \leq \mathrm{n}$. The set D is an immediate consequence of the construction by Cartesian product of the sets 0 with J and 2 with L respectively and easy to check that $|\mathrm{D}|=\mathrm{n}$ again.

Now, in continuation with this, it is proved here that the Cartesian product of C_{4} and P_{n}, such that $\gamma\left(\mathrm{C}_{4} \square \mathrm{P}_{\mathrm{n}}\right) \geq \mathrm{n}$, whenever $\mathrm{n} \geq 2$. Let $\mathrm{x} \in \mathrm{V}(\mathrm{H})$, the set $G x=G \square\{x\}$ is a layer of G i.e., G - layer. In Cartesian product of $\mathrm{C}_{4} \square \mathrm{P}_{\mathrm{n}}$ every single G-layer of the product is C_{4} and by lemma 2 above $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ and for each G-layer the domination set consists of a single vertex, that is, $\gamma\left(\mathrm{P}_{4}\right)=2$. Hence each G-layer of the product contains only one vertex from the domination set D; consequently n of the G-layers contains n vertices from the domination set and $|\mathrm{D}|=\mathrm{n}$, which proves that for any integers $n \geq 2, \gamma\left(\mathrm{C}_{4} \square \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}$.

Lemma 6 : let n be a positive integer with $n \geq 4$ for $\mathrm{C}_{5} \square \mathrm{P}_{\mathrm{n}}$, the domination set
$D=\{0 \times J\} \cup\{2 \times L\} \cup\{4 \times Q\}$; where
$J=\{j \mid j \equiv 0(\bmod 2) ; j \geq 0\}$,
$L=\{| | I \equiv 1(\bmod 2) ; I \geq 0\}$, and
$Q=\{q \mid q \equiv 0(\bmod 2) ; q \geq 0\}$.
Proof: Let $(0, j),(2, l)$ and $(4, q)$ be the coordinate pairs of the domination set points Cartesian product of C_{5} and P_{n} where $\mathrm{n} \geq 2$. It is shown here that $D=\{0 \times J\} \cup\{2 \times L\} \cup\{4 \times Q\}$, where D is the domination set. Let G_{x} be a layer of the Cartesian product of cycle C_{5} and path P_{n} where $\mathrm{x} \in \mathrm{H}$ and let H_{y} be also a layer of the Cartesian product of C_{5} and P_{n} where $y \in G$. Domination set points in the layer H_{y} will take the form of $j \equiv 0(\bmod 2)$, that is $J=\{j \mid j \equiv 0(\bmod 2) ; j \geq 0\}$, and $I \equiv 1(\bmod 2)$, that is $L=\{I \mid I \equiv 1(\bmod 2) ; l \geq 0\}$, and similarly $q \equiv 0(\bmod 2)$, that is $Q=\{q \mid q \equiv 1(\bmod 2) ; q \geq 0\}$. The domination set D is now union of the Cartesian product of the sets 0 and $\mathrm{J},\{0 \times \mathrm{J}\} ; 2$ and $\mathrm{L},\{2 \times \mathrm{L}\} ; 4$ and $\mathrm{Q},\{4 \times \mathrm{Q}\}$; that is $\mathrm{D}=\{0 \times \mathrm{J}\} \cup\{2 \times \mathrm{L}\} \cup\{4 \times \mathrm{Q}\}$. Obvious restrictions are imposed on ordinate indices are $\mathrm{j}<\mathrm{n}, \mathrm{I}<\mathrm{n}$ and $\mathrm{q}<\mathrm{n}$ which leads to the intervals on indices as $0 \leq \mathrm{j} \leq \mathrm{n}, 0 \leq \mathrm{I} \leq \mathrm{n}$ and also $0 \leq \mathrm{q} \leq \mathrm{n}$.

Theorem 7: For any integers $\mathrm{n} \geq 4$,
$\gamma\left(\mathrm{C}_{5} \square \mathrm{P}_{\mathrm{n}}\right)=\left\lfloor\frac{5 \mathrm{n}-1}{3}\right\rfloor$
Proof: Let D be the domination set containing the vertices of the form $(0, j),(2, I)$ and $(4, q)$, where $j \equiv 0(\bmod 2), I \equiv 1(\bmod 2)$ and $q \equiv 0(\bmod 2)$. By lemma 6 above, D is a construction of the Cartesian product of the sets 0 with J and 2 with L and 4 with Q respectively.

Now, in continuation with this, it is proved here that the Cartesian product of the cycle C_{5} and a path P_{n}, such that $C_{5} \square P_{n}$ the domination set of the product is $\gamma\left(\mathrm{C}_{5} \square \mathrm{P}_{\mathrm{n}}\right)=\left\lfloor\frac{5 n-1}{3}\right\rfloor$ whenever $\mathrm{n} \geq 4$; using the mathematical induction on n and starting with the initial $\mathrm{n}=4$ we have $\gamma\left(\mathrm{C}_{5} \square \mathrm{P}_{4}\right)=6$ which
holds. Furthering to the $\mathrm{k}_{\text {th }}$ step we have $\gamma\left(\mathrm{C}_{5} \square \mathrm{P}_{\mathrm{k}}\right)=\left\lfloor\frac{5 \mathrm{k}-1}{3}\right\rfloor$ the relation also holds for the $\mathrm{k}_{\text {th }}$ step. Then going toward the inductive step $\mathrm{k}+1$, and we have $\gamma\left(\mathrm{C}_{5} \square \mathrm{P}_{\mathrm{k}+1}\right)=\left\lfloor\frac{5 \mathrm{k}+4}{3}\right\rfloor$ which holds and proves the theorem.

3. Conclusion

Three new results are presented in this note, namely, $\gamma\left(\mathrm{C}_{3} \square \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}, \gamma\left(\mathrm{C}_{4} \square \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}$ and $\gamma\left(\mathrm{C}_{5} \square \mathrm{P}_{\mathrm{k}}\right)=\left\lfloor\frac{5 \mathrm{k}-1}{3}\right\rfloor$. As more general results of the type are NP-complete hence partial results are thee only way have some structure in the domination theory of Cartesian products.

References

[1] S. Klavzar and N. Seifter, Discrete Applied Mathematics 59 (1995) 97.
[2] V. G. Vizing, Sistemy 9 (1963) 30.
[3] V. G. Vizing, Uspehi Mat. Nauk 23 (1986) 117.
[4] M. El-Zahar and C. M. Pareek, Ars Combin. 31 (1991) 223.
[5] R.J. Faudree and R. H. Schelp, Congr. Numer. 79 (1990) 29.
[6] M. S. Jacobson and L. F. Kinch, J. Graph Theory 10 (1986) 97.
[7] S. Alikhani and Yee-Hock Peng, International Journal of Mathematics and Mathematical Sciences doi:10.1155/2009/542040, (2009).
[8] S. Gravier and M. Mollard, On domination numbers of Cartesian of Paths, Discrete Applied Mathematics 80, No. 2-3 (1997) 247.
[9] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, Boston, Mas. USA (2005).

[^0]: * Corresponding author : alidino.jumani@salu.edu.pk

