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Hydrodynamic equations of laser produced plasmas are presented and solved to calculate the linear growth rate of 
Rayleigh-Taylor instability (RTI) by using normal mode analysis. The growth rates of RTI are calculated in the absence 
and presence of the external magnetic field. The growth rates are presented graphically against the perturbation 
wavelength for different angles between the wave vector and initial horizontally directed magnetic field. The dependence 
of RTI growth rate on the interface density gradient and ablation effects is also investigated. It is found that growth rate 
of RTI is decreased in the presence of magnetic field; interface density gradient and ablation effects in laser produced 
plasmas. The numerical results are also presented and found to be in good agreement with the experimental 
observations. 

Keywords: Rayleigh-Taylor instability, Magnetic effects on RTI, Ablation surface instability, Density gradient effects in 
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1. Introduction 
The Rayleigh-Taylor instability (RTI) in plasmas 

is produced, when a heavy fluid supported by a 
light fluid is in equilibrium in a gravitational field [1]. 
During this equilibrium, if a small perturbation is 
introduced then this perturbation will grow and 
causing the system towards RTI. The instability 
occurs because any exchange of position between 
two elements with equal volume of the two fluids 
leads to a decrease of the potential energy of the 
system [2]. In general one gets RT stability when a 
light fluid pushes and accelerates a heavy fluid as 
shown in Fig. 1. In laser plasmas interaction, the 
RTI occurs whenever a pressure gradient opposes 
a density gradient i.e. 

ur
 is in an opposite 

direction to 

P∇
ρ∇

ur
 [3]. 

Let us consider two superimposed fluids, with 
densities ‘ Hρ ’ (heavy fluid) and ‘ Lρ ’ (light fluid); 
separated by a horizontal boundary and subjected 
to gravity ‘g’. The fluids are in hydrostatic 
equilibrium. However, when the upper fluid is 
heavier than the lower one, the small perturbations 
at the interface rapidly grow in time. Soon spikes of 
the heavier fluid fall down, while bubbles of the 
lighter fluid rise as shown in Fig. 2. 

A sinusoidal wave, with amplitude ‘ξ ’ on the 
surface between the two RT unstable fluids will 
grow exponentially, which is given by  

0 exp( )tξ ξ γ=      (1) 

Where 

2,    and   H L

H L

Aka A kρ ρ πγ
ρ ρ λ

⎛ ⎞−
= = =⎜ ⎟+⎝ ⎠

 have 

been defined as growth rate, Atwood number and 
wave vector respectively, and ‘a’ is the 
acceleration of the two fluids (or a=g in the 
gravitational field, without acceleration). 

For ICF, the low-density, high-pressure ablating 
plasma accelerates the high-density shell and 

LH ρρ >>  so the Atwood number is close to one. 
The growth rate defined in Eq. (1) does not take 
into account the density gradient effects. However, 
if we consider the density gradient at the interface 
of heavy and lighter fluid, it can have a stabilizing 
effect and explained with an effective Atwood 
number. The growth rate of RTI with density 
gradient at the interface is given by  
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Figure 1. Rayleigh Taylor unstable interface between the fluids of different densities: a) a lighter fluid supports a heavier fluid in 
gravitational field; 2) a lighter fluid pushes and accelerates a layer of denser fluid in laser produced plasma [4].. 

 

Figure 2. Characteristic flow patterns in the evolution of RT instability:1) a bubble formation penetrating the heavy fluid, 2) a spike 
entering in low density medium, 3) a spike formation with vortex motion, 4) intermixing between the fluids [3]. 
 

1
gk

kL
γ =

+
     (2) 

Where L ρ
ρ

=
∇

 is called the scale length of 

density gradient at the interface [7]. Here it is 
worthy to note that the growth rate described in Eq. 
(2) decreases with the increasing in the value of . L

In inertial confinement fusion (ICF), interaction 
of an intense laser with solid matter causes 
ablation of the solid and generation of ablative 
pressure. Ablative pressure can be used to 
accelerate thin targets. The most important 
application of ablative pressure is driving the 
implosion of spherical shell targets for the 
achievement of inertial confinement fusion 
reactions [5]. However, the ablation front, which 
separates the low density hot plasma from the 
accelerated dense layer, is hydrodynamically 
unstable. Under these conditions RTI can occur 
thus hindering the compression of the solid matter 

[6]. The determination of the RTI growth rate is 
crucial for the success of ICF because an 
excessive distortion of the ablation front could lead 
to a severe degradation of the capsule 
performance with respect to the final core 
conditions by seeding RTI during the deceleration 
phase and prevent the onset of the ignition 
process [10]. 

In 1973 an early paper out of the Naval 
Research Laboratory (NRL) reported that accurate 
dispersion relation including ablation and density 
gradient effects at the interface still did not exist to 
describe the RTI growth rate. Furthermore, the 
nonlinear growth and turbulence properties were 
almost entirely a mystery. A theoretical 
understanding of ablative stabilization was 
gradually evolved and confirmed by experiments. 
The linear growth of RTI was well understood with 
good agreement between experiment and 
simulation for planar geometry with wavelengths in 
the region of 30-100μ m [7].  
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Figure 3. Rayleigh-Taylor instability in the presence of gravitation g (down) or acceleration a (up) [3]. 
 

Recently, the growth of RTI with plastic target of 
solid density has been studied intensively. The 
wave number dependence of the growth rate has 
been well studied but the target density 
dependence of the RT growth rate has not been 
investigated. This study is important for various 
mitigation schemes of the RT instability, such as 
stability using picket pulses, high-Z coating, double 
ablation and cocktail color irradiation [11]. It has 
also been observed that RTI plays an important 
role in many complex phenomenons, such as 
some stages of stellar evolution, fragmentation of 
vapor films, deceleration of laser generated 
plumes, underground salt domes and volcanic 
islands etc. [3]. 

The layout of the paper is presented as follow: 
In Sec.II different models and set of equations are 
presented to study RTI in laser produced plasmas. 
The analytical expressions of their growth rates are 
also obtained in the linear limit. In Sec.III, the 
numerical plots are drawn for ICF experiments. A 
conclusion is presented in Sec.IV.  

2. Models and Set of Equations 
2.1. Rayleigh-Taylor Instability in unmagnetized 

plasmas : A linear analysis 
In order to study the linear analysis of RTI [3], 

we consider the hydrodynamic equations 
describing the fluid motion. The mass conservation 
equation is described as 

.( ) 0v
t
ρ ρ∂
+∇ =

∂

r r
     (3) 

and momentum conservation equation is given by 

( . )v v v P g
t

ρ ρ ρ∂
+ ∇ = −∇ +

∂

r r rr r r
      (4) 

Where ρ  is the fluid density, v  is the flow 
velocity,  is the pressure and 

r

P gρ r  is the external 
force acting on the fluid (if there is an acceleration, 
then a g= −

r r
). The Cartesian coordinates with unit 

vectors x̂ ,  and ŷ ẑ  are used, and the 
gravitational field (or the acceleration) is 
perpendicular to the interface between the fluids as 
shown in Fig. 3. 

Therefore 

ẑgg −=
r

 

In the linear approximation, we have 

1010

1010

1010

PPPPP >>+=
>>+=

>>+=

ννννν

ρρρρρ

     (5) 

Substituting Eq. (5) in Eq. (3) and Eq. (4), with 
stationary fluid assumptions, and on solving, we 
get the following two equations after linearization, 
described as follows, 

1
0 1.( ) 0v

t
ρ ρ∂

+∇ =
∂

r r
     (6) 
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1
0 1 1 0v P g

t
ρ ρ∂

+∇ − =
∂

r urr
     (7) 

We take incompressible flow assumption, i.e. 
density of the fluid is constant with time. The 
incompressible flow assumption is a reasonable 
approximation for fluids having flow velocities 
much less than the local speed of sound. 
Therefore, in Langrangian coordinate system we 
can write 

.d v
dt t

0ρ ρ ρ∂
= + ∇ =
∂

rr
  (8) 

Using linearization approximation in Eq. (8), 
together with Eq. (6) we obtain the following two 
equations as follows 

1
1 0. 0v

t
ρ ρ∂

+ ∇ =
∂

rr
     (9) 

1. 0v∇ =
r r

   (10) 

On solving Eqs. (9) and (10) together with Eq. 
(7), with assumption that initial density 0ρ is 
constant in both fluids and changes only in the z-
direction, i.e. normal to the interface between the 

fluids i.e. 0 0
x
ρ∂

=
∂

, 0 0
y
ρ∂

=
∂

and 0 0
z
ρ∂

≠
∂

. Writing 

Eqs. (7), (9) and (10) explicitly in Cartesian 
coordinates, one gets 

1 1
0 0xv P

t x
ρ ∂ ∂

+ =
∂ ∂

 

1 1
0 0yv P

t y
ρ

∂ ∂
+ =

∂ ∂
 

1 1
0 1 0zv P g

t z
ρ ρ∂ ∂

+ + =
∂ ∂

   (11) 

01
1 0zv

t z
ρρ ∂∂

+ =
∂ ∂

 

11 1 0yx z
vv v

x y z
∂∂ ∂

+ + =
∂ ∂ ∂

 

We have five equations with five 
unknowns 1xv , , , and1yv 1zv 1P 1ρ . It is convenient 

to solve these equations after a Fourier transforms 
in x-y plane, or equivalently the disturbance is 
analysed by its normal modes, and solutions 
depending on x ,  and t  can be described in the 
following way.  

y

1

1

1

( , , , ) ( )
( , , , ) ( ) exp ( )
( , , , ) ( )

x y

v x y z t u z
P x y z t P z i k x k y t

x y z t z
δ ω

ρ δρ

= ⎫
⎪= + −⎬
⎪= ⎭

   (12) 

Where ω  is the wave frequency and xk , are 

wave numbers along x & y direction such that [3]; 
yk

2 2 2
x yk k k= +  where 

2k π
λ

= . 

Substituting Eq. (12) into Eq. (11) and after some 
mathematical manipulations we get following 
equation in one variable  i.e.,  zu

2
2 0

0 0 2( ) ( )z
z

ddud k gk u
dz dz dz

ρρ ρ
ω

⎡ ⎤
0− + =⎢ ⎥

⎣ ⎦
   (13) 

If we assume that the fluid is confined between 
two rigid planes at Bz+  and , then boundary 
conditions are; 

Bz−

( ) 0

( )
B

z B

z
z

u z
du
dz ± 0

± =

=
 

The interface is the surface at  and the 
density is assumed to be constant anywhere 
except between the fluids at . Therefore, 
for

0z =

0z =
0z ≠ , Eq. (13) can be written as 

2
2

2

( ) ( ) 0z
z

u z k u z
z

∂
− =

∂
 

The general solution of this equation can be 
written as 

( ) exp( ) exp( )zu z kz kzα β= + −  
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Since  vanishes at the boundary and the 
velocity is continuous at the interface, then one 
has the solution of the form 

zu

exp( )   for   0
( )

exp( )   for   0z

w kz z
u z

w kz z
+ <⎧

= ⎨ − >⎩
   (14) 

Now integrating Eq. (13) across the interface 
from -ε to +ε, where ε is an infinitesimal element of 
z. Using solution given in Eq. (14) and denoting the 
density of the fluid above and below the interface 
by upρ  and downρ  accordingly (the direction up 

and down is determined by the direction of g), the 
Eq. (13) can be written as 

2
0 0

2
0

2

( )

0

z
z

z

ud dz k u dz
dz z

gk u d dz
dz

ε ε

ε ε

ε

ε

ρ ρ

ρ
ω

+ +

− −

+

−

∂
−

∂

− =

∫ ∫

∫
 

In above equation 2nd term disappears because 
vanishes at the boundary and the velocity is 

continuous at the interface, otherwise an infinite 
acceleration is needed to cross the interface. The 
integration of 1

zu

st and 3rd terms is given in 
Appendix. After solving the above integral 
equation, we obtained the quadratic equation in ω  
described as follows, 

2 Akgω = −  

Where 
( )
( )

up down

up down

A
ρ ρ
ρ ρ

−
=

+
 is called the Atwood 

number (a dimensionless parameter). The angular 
frequency ω  is defined as R iω ω γ= + , 

where Akgγ =  is a real number describe the 
growth rate of RTI.  Final solution becomes  

exp[ ( )]exp( )   for  0
( , , , )

exp[ ( )]exp( )   for  0
x y

z
x y

w i k x k y t kz z
v x y z t

w i k x k y t kz z

ω

ω

+ − + <⎧⎪= ⎨ + − − >⎪⎩
   (15) 

Now there are two cases, one is if 

upρ > downρ then A is positive, ω  becomes an 

imaginary number and 0γ > , then perturbation 

grows exponentially and interface becomes 
unstable [8]. On the other hand, if upρ < downρ then 

A is negative, ω  becomes real number and 0γ < , 
causing the interface to oscillate and there will be 
no growth of the perturbation. 

2.2. Effects of ablation in RT instability 
The effects of ablating material become 

important when there is an additional flow of 
material across the ablation surface from the high-
density region into the low-density plasma [3]. The 
following assumptions have been made in the 
model, i.e. fluid is assumed to be incompressible, 
the spatial extent and the density gradient of the 
plasma are neglected, and the plasma heating is 
not taken into account. 

It is assumed that there is a sharp density jump 
at the interface, so that the density is described by 
a θ function given as. 

0 1( ) ( ) ( )P foilz z zρ ρ θ ρ θ= − +    (16) 

Where  

1   for  0
( )

0   for  0
z

z
z

θ
>⎧

= ⎨ <⎩
 

In the foil reference frame of coordinates (the 
foil is at rest in this frame), the ablated material 
(plasma) moves with velocity 1Pv  in the ẑ−  

direction ( ẑ is a unit vector in the z- direction) 
given as; 

⎩
⎨
⎧

<
>−

=−−=
0zfor0
0zforẑ

ẑ)z( 1P
1P0

ν
θνν

   (17) 

The mass conservation and momentum 
conservation equations after linear approximation 
are combined to give as follows. 

1 1
0 1 0 0 1 0

0

( . . )v v v v v P P
t 1

ρρ
ρ

∂
+ ∇ + ∇ = ∇ −∇

∂

r r r rr r r r r
   (18) 

Combining Eqs. (8), (9), and (10) along with the 
incompressibility assumption equations and then 
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after some mathematical manipulations we get the 
following equation in one variable as follows,  zu

2
0 0

0( ) zz zk vu u
z z z

ρρ
ω

⎡∂ ∂∂
− − ⎢∂ ∂ ∂ ⎣

22
2 0 0 0

0 2 0z
z

k vakk i
z z
ρ ρρ

ω ω
⎡ ∂ ∂ u

⎤
− + +⎢ ∂ ∂⎣ ⎦

=⎥    (19) 

 

Where the acceleration ‘a’ is defined as, 
0

0

1( ) Pa
zρ

∂
= −

∂
. Equation (19) is now integrated 

across the interface form –ε to +ε, where ε is an 
infinitesimal element of z. The density and initial 
velocity are described by a θ  function, and the 
derivative of these terms gives the Dirac Delta 

function defined as
( ) ( )d z z

dz
θ δ= . The integral of 

the Dirac function over the segment, including the 
zero of the argument, is equal to one, while the 
integral of regular functions and the θ  function 
from –ε to +ε is equal to zero. In Eq. (19) the 
integral of 2nd and 3rd term vanish while the integral 
of 1st, 4th and 5th term is given in Appendix.  

After some mathematics, we obtain the 
following quadratic equation 

2 1( )
2

Pkvi akAω ω+ + 0=  

The solution of this quadratic equation is 

21 1( )
4 4

P Pkv kvi iω = − ± − akA  

Here we have assumed 

2
1

1 4
4

p
P

ikv AaakA v
k

⎛ ⎞
− ⇒⎜ ⎟

⎝ ⎠
 

Then above solution becomes 

1 ......
4

PkvakA iω ≈ − − +  

1( )
4 P
ki Aka vω = ± −  

1(
4 P
k )Aka vγ = − From this result one can see 

that the ablation process in laser produced 
plasmas reduces the growth rate of the Rayleigh-
Taylor instability. 

2.3. Different models for ablation effects in RT 
instability 

In 1974 Bodner [5] formulated a simple model 
for the ablation situation with a discontinuity in the 
density, which shows that the growth rate of the 
instability is reduced below the classical value by 

 as given below, ablkv

ablka kvγ = −    (20) 

where 1abl Pv v=  is the flow velocity across the 
ablation front. But relation for continuous density 
gradient case is different. Gamaly in 1993 [5] 
derived the following expression, 

1 abl
ka kv

kL
γ = −

+
   (21) 

This includes both the ablation velocity and the 
continuous density gradient in the calculations. 
However, experimental results and numerical 
simulations have indicated larger stabilization 
effects, such as the width of the acceleration 
region and the heating and energy exchange in the 
flow. Including the two latter effects yields a theory 
encapsulated by the Takabe formula [5], which 
predicts.  

ablka kvγ α β= −    (22) 

With 0.9α =  and β  is called ablative 
stabilization coefficient (obtained by fitting to 
numerical simulations). Takabe set up a true 
steady-state equilibrium situation with material flow 
through an absorption region, and numerically 
found the eigen functions of the flow. This resulted 
in a best fit to the growth rates. The most widely 
used growth rate is  

1 abl
ka kv

kL
γ β= −

+
   (23) 
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This is still only an analytical fit to numerical 
results includes both the ablation velocity and the 
continuous density gradient effects, 
where 1 to 3β = [5]. The case 1β =  corresponds 
to an indirect-drive scenario whereas 3β =  to the 

direct-drive case. The term ablkvβ  describes the 
stabilizing effect of ablation. 

2.4. Rayleigh-Taylor instability in the presence 
of magnetic field 

In this section, we will study the effects of 
magnetic field directed parallel to the accelerated 
interface between two fluids, where the heavier 
fluid is above the lighter fluid, in RT instability [3]. 
In high power laser plasma interaction very strong 
magnetic field is produced. Linearization 
procedure as done in previous sections is used in 
this analysis in the presence a magnetic field 
(Gaussian units) as follows, 

0 1B B B= +
r r r

 Where 0B
r

is constant and 1

0

1
B
B

= . 

On neglecting the electric field  relative to the 
 field, the momentum equation of the conducting 

fluid can be written as 

E
r

B
r

1 ( )v P J B
t c

ρ ∂
= −∇ + ×

∂

r
r r r

   (24) 

Where ‘ v ’ is the fluid velocity, ‘
r ρ ’ and ‘ ’ are 

density and pressure respectively, ‘

P
J
r

’ is the 
electric current and ‘c’ is the speed of light. Using 
the Maxwell equations we have  

( )
4
cJ B
π

= ∇×
r r r

   (25) 

The displacement current has been ignored 
and linearized momentum equation is written as 

0
0 1( )

4
Bv P B

t 1g zρ ρ
π

∧∂
= −∇ − × ∇× −

∂

rr r r
 (26) 

Maxwell equation for zero resistivity is given by 

0( )B c E v B
t

∂
= − ∇× = ∇× ×

∂

r
r r r rr

   (27) 

Non existence of magnetic monopole leads 
towards the expression 

1. 0B∇ =
r r

   (28) 

After solving Eqs. (9), (10), (26) and (27) by 
assuming , ,x y t  dependence of the variables as 
in previous case with some algebraic 
manipulations, we get the following differential 
equations for the two cases: 

Case: 1 When magnetic field is perpendicular to 

interface of two fluids i.e. 0 0B B z
∧

=
r

:   

2 2
20

0 2 2 2( ) ( ) ( )
4 z

Bd d d dk u z
dz dz dz dz

ρ
πω

⎡ ⎤
+ − =⎢ ⎥

⎣ ⎦
 

2
2 0

0 2( ) (z
dk gk u
dz
ρρ

ω
⎡ ⎤

+⎢ ⎥
⎣ ⎦

)z    (29) 

Case: 2 When magnetic field is parallel to interface 

of two fluids i.e. 0 0B B x
∧

=
r

: 

2 2
20

0 2 2( ) ( ) (
4

x
z )B kd d d k u z

dz dz dz
ρ

πω
⎡ ⎤

− − =⎢ ⎥
⎣ ⎦

 

2
2 0

0 2( ) (z
dk gk u
dz
ρρ

ω
⎡ ⎤

+⎢ ⎥
⎣ ⎦

)z

z

   (30) 

In laser-plasma interaction the horizontal 
magnetic field might play an important role in 
stabilizing the RTI. In particular, if the large d.c. 
magnetic field, created in the corona, penetrates 
into the ablation surface then the ablation surface 
instability is significantly modified [3]. There is no 
perturbation propagating in the z-direction, so the 
stabilizing effects of magnetic field in the z- 
direction are not taken and only Eq. (30) is further 
analyzed. On solving Eq. (30) for two uniform fluids 
separated at the surface , with a density 
distribution given as 

0z =

( ) ( ) ( )up downz zρ ρ θ ρ θ= + −  
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At the horizontal boundary , the following 
continuity conditions must be satisfied i.e. 

0z = 2 2
0 cos

c
B

g
φλ λ

ρ
< =

Δ
, where ( )up downρ ρ ρΔ = −  

   (34) 
{ }

{ }

lim
( ) ( )

0
lim

( ) ( )
0

z z

z z

u u

B B

ε ε
ε

ε ε
ε

+ = −
→

+ = −
→

 
The above expression shows that wavelengths 

shorter than a critical value λc will be stabilized by 
magnetic field for RTI case. 

3. Numerical Results 
After integrating Eq. (30) along the interface 

(Integration of magnetic effect term is given in 
Appendix and integration of other terms is same as 
in previous cases) and solving Eq. (30) as in 
previous cases we get 

In order to obtain numerical results to study 
RTI, we have used different parameters, upρ = 

10gm/cm3, downρ =1gm/cm3, a =g = 1016cm/sec2, 
B

2
2 0( )

( ) 2 ( )
up down x

up down up down

Bkkg
gk

ρ ρ
ω

ρ ρ π ρ ρ
⎡ −

=− −⎢
+ +⎢⎣

⎤
⎥
⎥⎦
         (31) 

B0 = 10 Gauss, L = 1.6 × 10  cm, v7 -4
ab= 3.2 × 10  

cm/s described in laser plasma experiments [7]. 

5

Using these parameters, it is found that 
perturbation wavelengths for RTI in laser plasma 
interactions are in the order of micro-meter (μ m) 
and time for their growth is found to be in the order 
of nano-second (ns) as shown in the Figures (4-6). 

Here in this case Atwood number is reduced in 
the presence of magnetic field, which leads 
towards the reduction of growth rate of RT 
instability. The effective Atwood number in the 
presence of magnetic field is defined by 

2
0( )

( ) 2 ( )
up down x

up down up down

B kA
gk

ρ ρ
ρ ρ π ρ ρ

⎡ −
′ = −⎢

+ +⎢⎣

⎤
⎥
⎥⎦

   (32) 

The growth rate vs. perturbation wavelength 
has been plotted for unmagnetized case, in the 
absence and presence of density gradient effects 
at the interface are shown in Fig. 4. If we compare 
the value of growth rate in both curves, then 
growth rate is found to be less in the presence of 
density gradient case for short wavelengths. This 
behavior shows that density gradient has 
stabilizing effects for short wavelength 
perturbations against the RTI which is desirable in 
experiments. But at large wavelength 
perturbations, this behavior is found to be opposite 
and the density gradient stabilizing phenomenon is 
not more effective to stabilize the RTI as shown in 
Fig. 4. 

The growth rate ‘γ ′ ’ is given by 

A kgγ ′ ′=    (33) 

If φ  is the angle between wave vector  and 

the initial magnetic field 

k

0B  directed along x –axis, 
then  

2 2cos x x

x y

k k
k k k

φ = =
+

, where 
2k π
λ

=  has been 

defined. 

Fig. 5 describes the behavior of growth rate 
with wavelength in the presence of magnetic field 
BB0 =10 Gauss (generated in laser plasmas 
experiments) at different angles of propagation 
with horizontal direction i.e, for φ = 0 , 30 , 45 and 
60 . After the comparison of growth rate in the 
case of magnetic field for φ = 60  with the case 
when B

7 

0  0 0 

0

0

0=0 as shown in Fig.4, it is found that 
growth rates in the presence of magnetic field are 
found be less at small wavelength and are almost 
same at large values. It is due to the fact that 
stabilizing behavior of magnetic field is prominent 
for small wavelengths and become negligible for 
the large wavelengths. 

For stable modes, , then from Eq. (27), 
we have 

2 0ω >

2
0( )

( ) 2 (
up down x

up down up down

B k
gk)

ρ ρ
ρ ρ π ρ ρ

−
<

+ +
 

which satisfies 
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Figure 4.   Growth rate Vs wavelength (RTI linear analysis with and without density gradient at the interface). 

 

Figure  5. Growth rate Vs Wavelength (RTI analysis with magnetic field for φ  = 00, 300, 450 and 600). 

For φ = 450 it is found that decrease in RTI 
growth rate at smaller wavelengths is more and 
similar at large wavelengths in comparison with the 
case for φ = 600. In case of φ = 450, there is a 
wavelength λ =10μ m, for which growth rate is 
maximum (~ 4.8×109s-1). The perturbation 
wavelength has maximum growth rate because the 
curve has its increasing behavior before that value 
and after that wavelength it has the decreasing 
trend. 

The RTI growth rates for φ =00 , 300 and 450 
cases are shown in Fig. 5. The growth rate is the 
composite behavior of the two terms in Eq.(33) i.e., 
one is the growth term due to density difference of 
the fluids and other is the magnetic field effect term 
as described by effective Atwood number given in 

Eq.(32). The behavior of these two terms with 
wavelength is opposite to each other. At short 
wave lengths the magnetic field term is more 
effective in comparison with term containing 
density difference of the two fluids. For φ =00 , 300 
and 450 the maximum growth rate is found to be 
3.25×109s-1, 3.9×109s-1 and 4.8×109s-1 
corresponding to the wavelength λ= 20μ m, 
16μ m and 10μ m respectively. From Fig. 5 it is 
clear that wavelength for which growth rate is 
maximum, is increased with the decrease in φ. 
Therefore the favorable results are for the case 
when the angle between the wave vector and 
magnetic field is minimum because the 
perturbation in that direction will grow late in 
comparison with other propagation angle. 
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Figure 6.   Growth rate Vs wavelength (RTI analysis including density gradient and ablation term for β  = 1, 2 and 3). 

The numerical results are also plotted for RTI in 
the presence of several phenomena during 
ablation, such as the width of the acceleration 
region, heating and energy exchange in the flow as 
given in Eq.(23). Curves for  = 1, 2 and 3β  in Fig. 
6 show that the maximum value of growth rate is 
3.66 x109 s-1, 2.65x109 s-1and 2.20x109s-1at λ 
=14μ m, 26μ m and 43μ m respectively. The 
growth rate is composite behavior of the two terms, 
one is the density gradient term and other is the 
ablation term as described in Eq. (23). It is found 
by comparison of growth rates for β = 1, 2, and 3 
as shown in Fig. 6 that with increase in the value of 
β , the maximum value of growth rate is 
decreased. For β = 3 (direct drive case) the 
maximum value of growth rate is minimum in 
comparison with other β values. Therefore the 
case for β = 3, RTI will take more time to grow and 
is more favorable in laser plasma experiments.  

4. Conclusion 
The RTI can cause a disturbance to grow from 

extremely small amplitude to a level that can 
disrupt the flow completely and can break the shell 
in laser produced plasmas. It is found that shorter 
wavelength modes grow rapidly to reach saturation 
before the longer wavelength modes 

because 1  γ α λ . After the shorter wavelength 

modes stop growing, they transfer their acquired 
energy to the longer wavelength disturbances, and 

the small disturbances are converted into larger 
structures [3]. 

Our results show that density gradient at the 
interface has a stabilizing effect against RT growth 
that can reduce the Atwood number and can be 
explained via an effective Atwood number 

[ ]
1

1
A

kL
=

+
 [10]. 

From results it has been clear that in laser-
plasma interaction the horizontal magnetic field 
plays an important role in stabilizing the RT 
instabilities. It is found that as the angle ‘φ ’ 
between ‘ ’ propagation vector and the initial 
magnetic field (along x-axis) increases, the growth 
rate stabilizing effect decreases and this effect 
vanishes when [3]. 

k

090φ =

Our numerical results show that when we 
consider ablation of the material surrounding the 
pellet then growth rate of perturbation is reduced. 
The physically explanation is that when ablation of 
the material occurs then there is an additional flow 
of material across the ablation surface from the 
high-density region into the low-density plasma 
which reduces the RTI [9]. Physically ‘ β ’ 
describes the stabilization effects due to several 
phenomena occur during ablation, such as the 
width of the acceleration region, heating and 
energy exchange in the flow [5].It is found from 
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results that the growth rates of the instabilities are 
also affected by the variations in the value of ‘β ’. 
The results are in good agreements with the laser 
produced plasma experiments [3,5,10]. 

Appendix  
Different Identities Used During Calculations 
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Here we have used the symmetry ( ) ( )z zδ δ= −  

and 
1( ) ( )
2

z z dz
ε

ε

θ δ
+

−

=∫ (Integration by parts) 

with
( ) ( )d z z

dz
θ δ= . 

References 
[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

N.A. Krall and A. W. Trivelpiece, Principles of 
Plasma Physics, McGraw-Hill, New York 
(1973). 

S. Atzeni and J. Meyer-Ter-Vehn, The 
Physics of Inertial Fusion, Oxford University 
Press, New York (2003). 

S. Eliezer, The Interaction of High - Power 
Lasers with Plasmas, Institute of Physics 
Publishing, London, UK (2002). 

S. Atzeni, Atoms, Solids and Plasma in 
Super Intense Laser Fields, Kluwer Press, 
New York, (2001). 

S. Pfalzner, An Introduction to Inertial 
Confinement Fusion, Taylor & Francis, New 
York, (2006). 

K. S. Budil, B. A. Remington, T. A. Peyser, K. 
O. Mikaelian, P. L. Miller, N. C.Woolsey, W. 
M. Wood-Vasey and A. M. Rubenchik, Phys. 
Rev. Lett. 76 (1996) 4536. 

J. D. Kilkenny, S. G. Glendinning and S. W. 
Haan, Physics of Plasmas 1 (1994) 1379. 

G. K. Parks, Physics of Space Plasma An 
Introduction, 2nd Edition, Westview Press, 
USA (2004). 

V. N. Goncharov, P. McKenty and S. 
Skupsky, Physics of Plasmas 7 (2000) 5118. 

R. Betti, V. N. Goncharov, R. L. McCrory and 
C. P. Verdon, Physics of Plasmas 5 
(1998)1446. 

T. Watari, M. Nakai, H. Azechi, T.Sakaiya 
and K. Mima, Physics of Plasmas 15 (2008) 
092109. 

Role of magnetic field and density gradients in Rayleigh-Taylor 413


