
The Nucleus, 45 (1-2) 2008: 11-31

Network security: a survey of modern approaches 11

P a k i s t a n

The

Nuc le us

The Nucleus
A Quarterly Scientific Journal

of Pakistan
Atomic

NETWORK SECURITY: A SURVEY OF MODERN APPROACHES

*M.F. ZAFAR, F. NAHEED, Z. AHMAD and M.M. ANWAR

NITS Division, ICCC, P.O. Box 2191, Islamabad, Pakistan

(Received October 4, 2007 and accepted in revised form May 27, 2008)

Security is an essential element of information technology (IT) infrastructure and applications. Concerns about security
of networks and information systems have been growing alongwith the rapid increase in the number of network users
and the value of their transactions. The hasty security threats have driven the development of security products known
as Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) to detect and protect the network, server
and desktop infrastructure ahead of the threat. Authentication and signing techniques are used to prevent integrity
threats. Users, devices, and applications should always be authenticated and authorized before they are allowed to
access networking resources. Though a lot of information is available on the internet about IDS and IPS but it all is
spread on so many sites and one has to spend a considerable part of his precious time to search it. In this regard a
thorough survey has been conducted to facilitate and assist the researchers. The issues and defend challenges in
fighting with cyber attacks have been discussed. A comparison of the categories of network security technologies has
been presented. In this paper an effort has been made to gather the scattered information and present it at one place.
This survey will provide best available uptodate advancement in the area. A brief description of open source IPS has
also been presented.

Keywords: Network security, Intrusion detection, Intrusion prevention, Security threats, Cyber attacks,
Information security.

1. Introduction

Network security is likely to become a key
factor in the development of the information society
as networking plays an important role in economic
and social life. Attacks against networks and
computers, threatening the operation of
businesses and the privacy of corporate and
personal data, continue to make headlines.
Security in network design can no longer be an
afterthought, but rather a pervasive system
characteristic. Security must be at the forefront of
concerns of IT managers [1]. They are responsible
for ensuring that authorized users are accessing
only the information they should and preventing
infiltration of their corporate networks by
unauthorized individuals [2]. Computers connected
to networks are exposed to potentially damaging
access by unauthorized “hackers”. Protecting
sensitive data and providing a stable computing
environment must be a priority task [3]. In the
recent years, however, this task has grown
increasingly more difficult due to a variety of

factors [4]:

The number of users and the ways in which
they access the network continues to expand,
making it harder to tightly control and opening
up many avenues for inappropriate use of
resources.

The quantity and complexity of attacks
continues to grow, often exploiting
vulnerabilities in the application-layer that
require sophisticated attack detection and
analysis to identify and mitigate.

Hacking/attacking tools are widely available on
the Internet and have become significantly less
complicated, making it possible for almost any
Internet user to download and run an exploit
against an organization.

Attacks increasingly target Windows
components, rather than server software,
which translate into more potentially vulnerable
systems.

Corresponding author : *hmfzafar@iccc.org.pk

The Nucleus, 45 (1-2) 2008

12 M.F. Zafar et al.

The number of vulnerabilities continues to
increase, with the average time from
vulnerability announcement to actual exploit
release decreasing, further compounding the
difficulties in ensuring effective security
patching to protect the network.

Table 1. The list of abbreviations used through out this paper.

IDS Intrusion Detection System

DNS Domain Name System

ICMP Internet Control Message Protocol

UDP User Datagram Protocol

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol /Internet
Protocol

OS Operating System

IP Internet Protocol

DoS Denial of Service

POP Post Office Protocol

SMTP Simple Mail Transfer Protocol

DDoS Distributed Denial of Service

IPS Intrusion Prevention Systems

NIPS Network IPS

HIPS Host IPS

SMTP Simple Mail Transfer Protocol

HTTP Hyper Text Transfer Protocol

MAC Mandatory Access Control

Potential hackers can break into system by
exploiting security holes or bugs in the software
that provides the network service. Hackers
generally search for these bugs by “scanning” the
network. V. Yegneswaran et al. [5] aggregated and
analyzed firewall logs from over 1600 networks
and reported that about 3 million scans happened
everyday and 20% to 60% of these scans are Web
server vulnerability scans and are linked to worm
propagation attempts. Attackers use various kinds
of scanning strategies to choose addresses of
potentially vulnerable machines to scan [6].

A seamless security infrastructure protects
against attacks on network devices as well as on
applications. In the traditional environment,
networks are often implemented using unique
security mechanisms to detect and respond to
attacks. Intrusion detection systems (IDS) and
intrusion prevention systems (IPS) can detect and
prevent attacks on the data network. Each threat

and threat category highlight the potential for the
loss of significant tangible and intangible business
as well as private value. Solutions to these areas
of concern should be factored into any network
security design.

The rest of the paper is organised as follows.
Section 2 describes the types of cyber attacks.
Section 3 is about the firewall. Section 4 presents
a detailed discussion of intrusion detection. In
section 5, a brief introduction of intrusion
prevention system has been presented. Section 6
of this paper is about implementation challenges of
IPS. The requirements for effective intrusion
prevention are highlighted in section 7. Available
open source prevention solutions are discussed in
section 8. At the end, section 9 concludes the
whole study.

2. Cyber Attacks

A cyber attack is defined as a failed attempt to
enter the system (no violation committed) [7].
Generally, attacks can be categorized in two
areas:

Passive (aimed at gaining access to penetrate
the system without compromising IT
resources),

Active (results in an unauthorized state change
of IT resources).

In terms of the relation intruder-victim, attacks
are categorized as:

Internal, coming from own enterprise’s
employees or their business partners or
customers,

External, coming from outside, frequently via
the Internet.

Attacks are also identified by the source
category, namely those performed from internal
systems (local network), the Internet or from
remote dial-in sources. The following types of
attacks are detectable by IDS tools and can be in
the ad-hoc categorization:

Those related to unauthorized access to the
resources:

Stealing information, for example disclosure of
proprietary information,

Password cracking and access violation,

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 13

Trojan horses,

Spoofing (deliberately misleading by

impersonating or masquerading the host
identity by placing forged data in the cache of
the named server i.e. DNS spoofing,

Scanning ports and services, including Internet
ICMP scanning (Ping), UDP, TCP Stealth
Scanning (TCP that takes advantage of a
partial TCP connection establishment
protocol.) etc.

Interceptions; most frequently associated with
TCP/IP stealing and interceptions that often
employ additional mechanisms to
compromise operation of attacked systems
(for example by flooding),

Remote OS Fingerprinting, for example by
testing typical responses on specific packets,
addresses of open ports, standard application
responses (banner checks), IP stack
parameters etc.,

Network packet listening (a passive attack that
is difficult to detect but sometimes possible),

Unauthorized network connections,

Taking advantage of system weaknesses to
gain access to resources or privileges,

Unauthorized alteration of resources (after
gaining unauthorized access):

Falsification of identity, for example to get
system administrator rights,

Information altering and deletion,

Unauthorized transmission and creation of
data (sets), for example arranging a database
of stolen credit card numbers on a
government computer,

Unauthorized configuration changes to
systems and network services (servers).

Denial of Service (DoS):

Flooding – compromising a system by sending
huge amounts of useless information to lock
out legitimate traffic and deny services:

Ping flood (Smurf) – a large number of ICMP
packets sent to a broadcast address,

Send mail flood - flooding with hundreds of
thousands of messages in a short period of
time; also POP (Post Office Protocol) and
SMTP (Simple Mail Transfer Protocol)
relaying,

SYN flood – initiating huge amounts of TCP
requests and not completing handshakes as
required by the protocol,

DDoS; coming from a multiple source,

Compromising the systems by taking
advantage of their vulnerabilities:

Buffer Overflow, for example Ping of Death —
sending a very large ICMP (exceeding 64 KB),

Remote System Shutdown,

Web Application attacks; attacks that take
advantage of application bugs may cause the
same problems as described above.

It is important to remember, that most attacks
are not a single action, rather a series of individual
events developed in a coordinated manner. In the
following paragraphs some of the threats have
been discussed in brief alongwith protection
measures and approaches which have been or
could be taken against them.

Threats of disclosure include eavesdropping.
Eavesdropping involves sniffing network packets
for data that can be interpreted in real-time or
saved for later analysis or playback. The
probability of being vulnerable to eavesdropping
increases as shared IP networks are directly
accessible with wider user access and thus are
easier to sniff for traffic [1].

A fully switched network limits the ability to
"eavesdrop" on network traffic. This means that
data packets exchanged by two computers are not
broadcasted to any other computers on the
network. But connections into computers from
home or other daughter institutions may be
vulnerable to eavesdropping [3].

Encryption can prevent disclosure threats.
Encrypting stored files is a technique to prevent
loss of sensitive data. Access to data for the
purpose of decryption must be controlled using
strong authentication and authorization techniques
such as challenge-response techniques, one-time
passwords, and role based access control. Thus

The Nucleus, 45 (1-2) 2008

14 M.F. Zafar et al.

encryption is valuable but not sufficient to protect
against disclosure.

Integrity threats are threats based on the
insertion of bogus content into files or
communication streams. Attackers may insert
malicious or misleading data into unprotected files.
When read or executed with the assumption that
the files have integrity, the corrupt files may disrupt
system operation. Attackers may also change the
contents of data as they are transferred resulting in
the improper interpretation of the data. Another
integrity threat involves an attacker spoofing the
identity of a valid user. When successful, the
imposter may gain access to proprietary
information or systems and operate with the full
privileges of the impersonated user [1].

DoS attacks typically flood the network, with
traffic in an attempt to render the entire network, to
be unusable by authorized users. DoS attacks take
many forms that include ICMP Floods,
synchronised packet in transmission control
protocol (TCP SYN) Floods, and UDP Floods. One
common DoS attack technique, buffer overflows,
may not only crash the targeted device but also be
used as a means to gain control of the target and
permit the attacker complete, privileged access.
The library routines prevent a major source of
buffer overflow attacks that may occur in
applications, especially those that provide remote
services and execute with root privileges [1].

Approaches to detect buffer overflow attacks
can be divided into two groups: static techniques
that detect potential buffer overruns by examining
program’s source code and dynamic techniques
that protect programs at runtime. Wilander et al. [8,
9] presented a comprehensive overview of tools of
both types. Greiner [10] gives an overview of
manual code auditing techniques that help detect
potential vulnerabilities. The real cause of buffer
overflows is unchecked pointer or array access.
Jones and Kelly [11] and Austin et al. [12]
proposed to check each pointer access at run time
to solve this problem. Purify [13] is a similar tool
that instruments program’s object code and
therefore does not require access to its source
code. CRED [14] is a project that aims to provide a
comprehensive memory access bounds checking
at a reasonable cost.

The return address is the most common target
of buffer overflow attacks. Stackguard [15] is a
system that protects the return address by placing
a canary word on the stack before the return
address. If the canary word is found modified upon
the function return then an attack has taken place.
RAD [16] takes a different approach. It compares
the return address on the stack with the saved
value and raises the red flag if the two values are
different. StackShield [17], ProPolice [18] and
StackGhost [19] are similar systems that protect
other code pointers such as function pointers and
stack frame register in addition to the return
address. FormatGuard [20] provides a set of
wrapper functions that protect a program from
format string attacks.

For spoofing-based attacks, we need to identify
the sources of attack traffic. This kind of
approaches [21,22] try to figure out which
machines attacks come from. Then appropriate
measurement will be taking on those machines (or
near them) and eliminate the attacks. In the case
where attacker has a vast supply of machines, the
trace approaches become not too helpful. A good
example of the trace back technique is Traceback.
Traceback [21] which locates the agent machines
making the DDoS attacks.

DDoS attacks occur when an attacker gains
control of multiple computers and directs them to
simultaneously attack a single target. This type of
DoS attack is more difficult to thwart because the
perpetrators are more numerous. There have been
a number of proposals and solutions to the DDoS
attacks. However, there is still no comprehensive
solution which can protect against all known forms
of DDoS attacks [23].

3. Firewalls

A firewall is a hardware or software device
which is configured to permit, deny, or proxy data
through a computer network which has different
levels of trust. There are several classifications of
firewalls depending on where the communication is
taking place or is intercepted and the state that is
being traced.

While firewalls are certainly the first-line of
defense and an absolute requirement for any
company connecting to the Internet, so
organizations have realized they cannot be the
only line of defense. As a result, most

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 15

organizations have adopted a layered approach to
network security to try to minimize the risks to their
critical assets [4].

It is apparent that firewalls are not always
effective against many intrusion attempts [24, 25].
The average firewall is designed to deny clearly
suspicious traffic - such as an attempt to telnet to a
device when corporate security policy forbids telnet
access completely - but is also designed to allow
some traffic through - Web traffic to an internal
Web server, for example [26]. It's also generally
accepted that a firewall is not enough to
completely secure a network, for the following
reasons:

Firewalls are not always perfectly
administered. Human error accounts for a
significant number of security breaches.

Trojan software can be downloaded disguised
as something else, which the firewall doesn't
block. Such software can then use “trusted”
protocols (such as HTTP) to tunnel through the
firewall, and allow remote exploitation of PC's
within the private network.

Back doors may exist, such as ISDN modems,
or unauthorized wireless LAN links that are
connected to a PC on the internal network.
These can be used to bypass the firewall.

The problem is that many programmes called
“Exploits” attempt to exploit the weaknesses in the
protocols those are admissible through perimeter
firewalls, and once the web server has been
compromised, this can often be used as a spring
board to launch additional attacks on other internal
servers. Once a “root kit” and “backdoor” has been
installed on a server, the hacker has ensured that
he / she will have unfettered access to that
machine at any point in the future [26].

Firewalls are also typically employed only at the
network perimeter. However, many attacks,
intentional or otherwise, are launched from within
an organisation. Virtual private networks, laptops,
and wireless networks all provide access to the
internal network that often bypasses the firewall
[26].

4. Intrusion Detection Systems (IDS)

An Intrusion Detection System (abbreviated as
IDS) is a defense system, which detects hostile

activities in a network. One key feature of intrusion
detection systems is their ability to provide a view
of unusual activity and issue alerts notifying
administrators and/or block a suspected
connection. In addition, IDS tools are capable of
distinguishing between insider attacks and external
ones.

Intrusion detection is an essential module in all
network security products. It is the art of detecting
inappropriate, incorrect, or anomalous activity [27].
Originally, system administrators used to perform
intrusion detection by sitting in front of a console
and monitoring user activities. Although effective
enough at the time, this early form of intrusion
detection was ad hoc and not scalable [28, 29].

In the late ’70s and early ’80s, searching
through a stack of printed audit logs, four- to five-
feet high, was obviously very time consuming. With
this overabundance of information and only
manual analysis, administrators mainly used audit
logs as a forensic tool to determine the cause of a
particular security incident after the fact. There was
little hope of catching an attack in progress [30].

In the early ’90s, researchers developed real-
time intrusion detection systems that reviewed
audit data as it was produced. This enabled the
detection of attacks and attempted attacks as they
occurred, which in turn allowed for real-time
response, and, in some cases, attack pre-emption.
More recent intrusion detection efforts have
centered on developing products that users can
effectively deploy in large networks. This is no
easy task, given increasing security concerns,
countless new attack techniques, and continuous
changes in the surrounding computing
environment [31, 32].

Due to growing number of intrusions and use of
the Internet and local networks, organizations are
increasingly implementing IDSs which monitor IT
security breaches.

4.1. Symptoms of intrusion

Let us take a closer look at the types of
symptoms that are helpful in tracing intruders [7].

Utilizing known vulnerabilities: In most cases, any
attempt to take advantage of faults in organization
security systems may be considered as an attack
and this is the most common symptom of an

The Nucleus, 45 (1-2) 2008

16 M.F. Zafar et al.

intrusion. However, the organization itself may
“facilitate” the task of attackers, using tools which
aid in the process of securing its network – so
called security and file integrity scanners. They
operate either locally (assisting system
administrators in vulnerability assessment) or
remotely but may also be deliberately used by
intruders. Since these tools are often a double-
edged sword and are available for both the users
and hackers, accurate monitoring of the usage of
file integrity scanners and known vulnerability
scanners is needed, to detect attacks in progress
or trace damages from successful attacks. Hence,
the following technical issue arises:

Detection of file integrity scanners - The
available file integrity testing tools operate in a
systematic manner so that it is possible to use
modeling techniques and specialized tools for
detection purposes.

A good correlation between scanning and
usage is required – scanning for flaws may
further use a service featuring such flaws, this
may be a precursor of an attack to come.

Recurrent abnormal network activity: An intruder
actually trying to compromise a system often uses
a large number of exploits and makes many
unsuccessful attempts. His activities differ from
those of the user working with the system [33]. Any
penetration-testing tool should be able to identify
suspicious activities after a certain threshold has
been exceeded. Then, an alert may be produced
and diffused. This passive technique allows
detection of intruders without discovering a clear
picture of the event (exploits involved, tools,
services, software configuration, etc.), by only
quantitatively examining network activities.

Directional inconsistancies in traffic: Any
directional inconsistency in packets or sessions is
one of the symptoms of a potential attack.
Considering the source address and location
(outbound or inbound) can identify the direction of
a packet. Session flow is identified by the direction
of the first packet of that session. Therefore, a
request for service on a local network is an
incoming session and a process of activating a
Web based service from a local network is an
outgoing session. The following directional
inconsistencies may be considered as attack
evidence indicators:

Packets originating in the Internet (incoming)
and identified by their local network source
address – request for service incoming from
outside, for which the packets have their
internal source address. This situation may
indicate a possible outside IP spoofing attack.
Such problems can be routinely solved at
routers that can compare the source address
with the destination location. In practice, few
routers support this security option since this is
the domain of firewalls.

Packets originating in a local network
(outgoing) and sent to an external network with
an external destination address – this is a
reverse case. An intrusion attempt is
accomplished from outside and targeted at an
external system.

Packets with unexpected source or destination
ports – if the source port of an incoming or
outgoing request is not consistent with the type
of service, this may indicate an intrusion
attempt (or system scanning). Directional
inconsistencies are most likely to be detected
by firewalls that simply drop illegal packets.
However, firewalls are not always merged with
intrusion detection systems, therefore it is
expected that the latter will also remedy the
above problem.

Unexpected attributes as an intrusion symptom:
The most frequent cases are the ones where one
is expected to deal with a set of attributes of
packets or specific requests for services. It is
possible to define the expected attribute pattern. If
encountered attributes do not match this pattern,
this may indicate a successful intrusion or intrusive
attempt.

Unexplained problems as intrusion indicators:
A potential intruder may design its malicious
activity with side effects that will cause odd
behavior of the system. Monitoring such side
effects is difficult since their location is hardly
detectable [7]. Below there are some examples of:

Unexplained problems with system hardware
or software, for example server down,
particularly daemons not running, unexplained
system restart attempts, changes to system
clock settings.

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 17

Unexplained system resource problems: file
system overflow; abnormal consumption of
CPU usage.

Odd messages from system daemons, system
daemons not running or disturbed (particularly
superuser daemons and those designed to
monitor the system state, for example Syslog).
Such symptoms are always suspicious.

Unexplained system performance problems
(routers or system services, for example long
server response times).

Unexplained user process behavior, for
example unexpected access to system
resources.

Unexplained audit log behavior. Audit logs that
shrink in size (unless intentionally reduced by
the system administrator).

4.2 Detection techniques

In computer networks, intrusion detection is
usually achieved in two ways – at the network level
or at the host level. Network Intrusion Detection
(NID) means scanning packets in network
segments, looking for evidence of known attack
signatures, or other suspicious activity. This is
highly dependent upon the existing policies of the
network and firewall administration [26]. The other
form is Host-based Intrusion Detection (HID). This
works on the principle that if a computer is
successfully compromised by an intruder (who
may be working locally and therefore won't be
seen by the network), he will tend to make
changes to certain files, loading exploitation
programs or other unauthorized software. This can
be detected by regularly running scans, and
informing the central authority if there are any
changes [34].

There are two basic categories of intrusion
detection techniques: anomaly detection and
misuse detection.

Anomaly-based detection

uses models of the
intended behavior of users and applications,
interpreting deviations from this “normal” behavior
as a problem [35, 36]. A basic assumption of
anomaly detection is that attacks differ from normal
behavior. The main advantage of anomaly
detection systems is that they can detect
previously unknown attacks. In actual systems,
however, the advantage of detecting previously

unknown attacks is paid for in terms of high false-
positive rates. Anomaly detection systems are also
difficult to train in highly dynamic environments.
Another noteworthy problem with the use of
anomaly-based detection techniques is that it is
often difficult for analysts to determine why a
particular alert was generated and to validate that
an alert is accurate and not a false positive,
because of the complexity of events and number of
events that may have caused the alert to be
generated [34].

Misuse (Signature-based) detection systems

essentially define what’s wrong. They contain
attack descriptions (or “signatures”) and match
them against the audit data stream, looking for
evidence of known attacks [37, 38]. The main
advantage of misuse detection systems is that they
focus analysis on the audit data and typically
produce few false positives. The main
disadvantage of misuse detection systems is that
they can detect only known attacks for which they
have a defined signature. As new attacks are
discovered, developers must model and add them
to the signature database.

A signature is a pattern that corresponds to a
known threat. Signature-based detection is the
process of comparing signatures against observed
events to identify possible incidents. Signature-
based detection is very effective at detecting
known threats but largely ineffective at detecting
previously unknown threats, threats disguised by
the use of evasion techniques, and many variants
of known threats.

Signature-based detection is the simplest
detection method because it just compares the
current unit of activity, such as a packet or a log
entry, to a list of signatures using string
comparison operations. Signature-based detection
technologies have little understanding of many
network or application protocols and cannot track
and understand the state of complex
communications. They also lack the ability to
remember previous requests when processing the
current request. This limitation prevents signature-
based detection methods from detecting attacks
that comprise multiple events if none of the events
contains a clear indication of an attack [34].

Pattern matching

in its most basic form is
concerned with the identification of a fixed

The Nucleus, 45 (1-2) 2008

18 M.F. Zafar et al.

sequence of bytes in a single packet. In addition to
the tell-tale byte sequence, most IPS will also
match various combinations of the source and
destination IP address or network, source and
destination port or service, and the protocol. It is
also often possible to tune the signature further by
specifying a start and end point for inspection
within the packet, or a particular combination of
TCP flags.

The more specific these parameters can be, the
less inspection needs to be carried out against
each packet on the wire. However, this approach
can make it more difficult for systems to deal with
protocols that do not live on well defined ports and,
in particular, Trojans, and their associated traffic,
which can usually be moved at will.

They are also prone to false positives, since
legitimate traffic can often contain the relatively
small set of criteria supposedly used to determine
when an attack is taking place.

This method is usually limited to inspection of a
single packet and, therefore, does not apply well to
the stream-based nature of network traffic such as
HTTP (Hypertext Transfer Protocol) sessions. This
limitation gives rise to easily implemented evasion
techniques.

Protocol analysis

means analyzing the behavior of
protocols to determine whether one host is
communicating normally with another. For
example, a host might send malformed IP packets,
perhaps IP packets in which one or more values in
the IP header is out of range. In still another, a
malicious code may send malformed "chunks,"
parcels in which data are transferred from a
browser to a web server to provide an orderly way
for the web server to encode the input [39].

Stateful protocol analysis

can identify unexpected
sequences of commands, such as issuing the
same command repeatedly or issuing a command
without first issuing a command upon which it is
dependent. Another state tracking feature of
stateful protocol analysis is that for protocols that
perform authentication, the intrusion detection and
prevention system (IDPS) can keep track of the
authenticator used for each session, and record
the authenticator used for suspicious activity. This
is helpful when investigating an incident.

The primary drawback to stateful protocol
analysis methods is that they are very resource-
intensive because of the complexity of the analysis
and the overhead involved in performing state
tracking for many simultaneous sessions. Another
serious problem is that stateful protocol analysis
methods cannot detect attacks that do not violate
the characteristics of generally acceptable protocol
behavior, such as performing many benign actions
in a short period of time to cause a denial of
service. Yet another problem is that the protocol
model used by an IDPS might conflict with the way
the protocol is implemented in particular versions
of specific applications and operating systems, or
how different client and server implementations of
the protocol interact [34].

Rule-based intrusion detection

is more of an
eclectic approach than the other alternatives to
signature-based intrusion detection. In this
approach, logic conditions based on possible
incident-related observations are defined.
Observations could be signatures, irregularities in
protocol behavior, unusual system events,
changes in files and/or directories, and so on.
Rule-based intrusion detection analyzes elements
derived from these observations and then uses
logic to identify attacks. The rule-based approach
is potentially more powerful than signature-based
intrusion detection because it relies on multiple
variables/indicators—events based on signatures,
protocol analysis, target detection indicators, and
so on [39].

The main limitation of rule-based intrusion
detection is the potential complexity associated
with all the rules that are normally created. Only
those with advanced technical skills and
knowledge are likely to be able to understand the
rules in the first place. It is generally difficult to
create rules (which can often involve many steps
of logic) and also to maintain rules (for example,
weeding out obsolete rules). Processing the rules
themselves can also cause massive CPU and
memory utilization in the host that houses a rule-
based intrusion detection system. Still, rule-based
detection represents a significant advance over
simple signature-based intrusion detection; it is
likely to be used increasingly over time [39].

Neural networks

are systems that perform pattern
recognition on inputs they receive based on
models of how neurons in mammals process

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 19

information. Although complicated and still
somewhat mysterious, the neural networks
approach can be applied to a wide range of pattern
recognition problems, intrusion detection included.
The beauty of neural networks in intrusion
detection is that no signatures or even rules are
needed. You simply start feeding input—data
concerning network- or host-based events—to a
neural network, and it does the rest. Neural
networks are, therefore, well suited to picking up
new patterns of attacks readily, although some
learning time is required [39].

4.3. Which detection technique is the best?

Which detection method to choose is a difficult
question. Adequate performance to handle the
traffic to which the sensor will be exposed,
accuracy of alerts, low incidence of false positives,
and centralised management and reporting/
analysis tools are far more important than how the
packets are processed.

As it has already mentioned, most protocol
analysis systems are also reduced to performing
some form of pattern-matching process following
the protocol decode. Likewise, even the most basic
pattern-matching systems perform some form of
protocol analysis - even if it is only for a limited
range of protocols. In truth, almost all Network IPS
systems are already adopting a hybrid
architecture.

Intrusion detection systems can be arranged as
either centralized (for example, physically
integrated within a firewall) or distributed. A
distributed intrusion detection system (DIDS)
consists of multiple IDSs over a large network, all
of which communicate with each other. More
sophisticated systems follow an agent structure
principle where small autonomous modules are
organized on a per-host basis across the protected
network [40]. The role of the agent is to monitor
and filter all activities within the protected area and
— depending on the approach adopted — make
an initial analysis and even undertake a response
action. The cooperative agent network that reports
to the central analysis server is one of the most
important components of intrusion detection
systems. DIDS can employ more sophisticated
analysis tools, particularly connected with the
detection of distributed attacks [41]. Another
separate role of the agent is associated with its

mobility and roaming across multiple physical
locations. In addition, agents can be specifically
devoted to detect certain known attack signatures.
This is a decisive factor when introducing
protection means associated with new types of
attacks [42]. IDS agent-based solutions also use
less sophisticated mechanisms for response policy
updating [43].

5. Intrusion Prevention Systems (IPSs)

Intrusion prevention systems are proactive
defence mechanisms designed to detect malicious
packets within normal network traffic and stop
intrusions dead, blocking the offending traffic
automatically before it does any damage rather
than simply raising an alert as, or after, the
malicious payload has been delivered [26, 39].

Intrusion prevention devices are typically inline
devices on the network that inspect packets and
make decisions before forwarding them on to the
destination. This type of device has the ability to
defend against single packet attacks on the first
attempt by blocking or modifying the attack packet.
There are several methods of intrusion prevention
technologies [44].

System memory and process protection -- This
type of intrusion prevention strategy resides at
the system level. Memory protection consists
of a mechanism to prevent a process from
corrupting the memory of another process
running on the same system. Process
protection consists of a mechanism for
monitoring process execution, with the ability
to kill processes that are suspected of attacks.

Session sniping -- This type of intrusion
prevention strategy terminates a TCP session
by sending a TCP RST packet to both ends of
the connection. When an attempted attack is
detected, the TCP RST is sent and the
attempted exploit is flushed from the buffers
and thereby prevented. Note that the TCP RST
packets must have the correct sequence and
acknowledge numbers to be effective.

Gateway interaction devices -- This type of
intrusion prevention strategy allows a detection
device to dynamically interact with network
gateway devices such as a router or firewall.
When an attempted attack is detected, the
detection device can direct the router or
firewall to block the attack.

The Nucleus, 45 (1-2) 2008

20 M.F. Zafar et al.

Inline network devices -- This type of intrusion
prevention strategy places a network device
directly in the path of network communications
that has the capability to modify and block
attack packets as they traverse the device's
interfaces. This acts much like a router or
firewall combined with the signature-matching
capabilities of an IDS. The detection and
response happens in real time before the
packet is passed on to the destination network.

Within the IPS market place, there are two main
categories of product: Host IPS and Network IPS.

5.1. Host IPS (HIPS)

As with Host IDS systems, the Host IPS relies
on agents installed directly on the system being
protected. It binds closely with the operating
system kernel and services, monitoring and
intercepting system calls to the kernel or APIs in
order to prevent attacks as well as log them.

It may also monitor data streams and the
environment specific to a particular application (file
locations and Registry settings for a Web server,
for example) in order to protect that application
from generic attacks for which no “signature” yet
exists.

One potential disadvantage with this approach
is that, given the necessarily tight integration with
the host operating system, future OS upgrades
could cause problems.

Since a Host IPS agent intercepts all requests
to the system it protects, it has certain
prerequisites - it must be very reliable, must not
negatively impact performance, and must not block
legitimate traffic. Any HIPS that does not meet
these minimum requirements should never be
installed in a host, no matter how effectively it
blocks attacks [26].

5.2. Network IPS (NIPS)

The Network IPS combines features of a
standard IDS, an IPS and a firewall, and is
sometimes known as an In-line IDS or Gateway
IDS (GIDS). As with a typical firewall, the NIPS has
at least two network interfaces, one designated as
internal and one as external. A useful side effect of
some NIPS products is that as a matter of course -
they will provide “packet scrubbing” functionality to
remove protocol inconsistencies resulting from

varying interpretations of the TCP/IP specification
(or intentional packet manipulation).

Thus any fragmented packets, out-of-order
packets, or packets with overlapping IP fragments
will be re-ordered and “cleaned up” before being
passed to the destination host, and illegal packets
can be dropped completely.

A true IPS device, however, is sitting in-line - all
the packets have to pass through it. Therefore, as
soon as a suspicious packet has been detected -
and before it is passed to the internal interface and
on to the protected network, it can be dropped [26].

Most NIPS products are basically IDS engines
that operate in-line, and are thus dependent on
protocol analysis or signature matching to
recognise malicious content within individual
packets (or across groups of packets). These can
be classed as Content-Based IPS systems [26].

5.2.1. Rate-based IPS

There is, however, a second breed of Network
IPS that ignores packet content almost completely,
instead monitoring for anomalies in network traffic
that might characterise a flood attempt, scan
attempt, and so on. These devices are capable of
monitoring traffic flows in order to determine what
is considered “normal”, and applying various
techniques to determine when that traffic deviates
from normal. This is not always as simple as
watching for high-volumes of a specific type of
traffic in a short span of time, since they must also
be capable of detecting “stealth “attacks, such as
low-rate connection floods and slow port scan
attempts.

Since these devices are concerned more with
anomalies in traffic flow than packet contents, they
are classed as Rate-Based IPS systems - and are
also known as Attack Mitigators, as they are so
effective against DOS and DDOS attacks [23].

6. Implementation Challenges

There are a number of challenges to the
implementation of an IPS device that do not have
to be faced when deploying passive-mode IDS
products. These challenges all stem from the fact
that the IPS device is designed to work in-line,
presenting a potential choke point and single point
of failure [26].

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 21

If a passive IDS fails, the worst that can happen
is that some attempted attacks may go undetected.
If an in-line [45] device fails, however, it can
seriously impact the performance of the network.
Perhaps latency rises to unacceptable values, or
perhaps the device fails closed, in which case you
have a self-inflicted Denial of Service [39] condition
on your hands. On the bright side, there will be no
attacks getting through [46].

Even if the IPS device does not fail altogether, it
still has the potential to act as a bottleneck,
increasing latency and reducing throughput as it
struggles to keep up with upto a Gigabit or more of
network traffic. Devices using off-the-shelf
hardware will certainly struggle to keep up with a
heavily loaded Gigabit network, especially if there
is a substantial signature set loaded, and this could
be a major concern for the network administrator
[26, 47].

Network IPS device must perform much like a
network switch. It must meet stringent network
performance and reliability requirements as a
prerequisite to deployment, since very few
customers are willing to sacrifice network
performance and reliability for security. A NIPS
that slows down traffic, stops good traffic, or
crashes the network is of little use [46].

Dropped packets are also an issue, since if
even one of those dropped packets is one of those
used in the exploit data stream it is possible that
the entire exploit could be missed. Indeed, it is
necessary to design the product to operate as
much as a switch as an intrusion detection and
prevention device [26].

Most notable is the recurring issue of false
positives in today's intrusion detection systems. On
some occasions, legitimate traffic will display some
attack characteristics similar to those of malicious
traffic. This could be anything from inadvertently
matching signatures to uncharacteristic, high-
volume traffic. Even a finely tuned IDS can present
false positives when this occurs [46].

When intrusion prevention is involved, false
positives can create a denial of service (DoS)
condition for legitimate traffic [23, 39, 45, 47].
Additionally, attackers who discover or suspect the
use of intrusion prevention methods can purposely
create a DoS attack against legitimate networks

and sources by sending attacks with spoofed
source IP addresses. A simple mitigation to some
DoS conditions is the use of an exclude list, also
called a whitelist. It is important to include systems
such as DNS, mail, routers, and firewalls in the
whitelist [26]. Another potential problem with any
Gigabit IPS/IDS product is the amount of alert data
it is likely to generate. The ability to tune the
signature set accurately is essential in order to
keep the number of alerts to an absolute minimum.

Session sniping system identification is another
concern when deploying IPSs. When systems
terminate sessions with RST packets, an attacker
may be able to discover not only that an IPS is
involved, but also the type of underlying system.
Readily available passive operating system
identification tools, such as p0f, analyze packets to
determine the underlying operating system. This
type of information allows an attacker to potentially
evade the IPS or direct an attack at the IPS [46,
48, 49].

Of course, one point in favour of IPS when
compared with IDS is that because it is designed
to prevent the attacks rather than just detect and
log them, the burden of examining and
investigating the alerts - and especially the
problem of rectifying damage done by successful
exploits - is reduced considerably [26, 45, 47].

When deploying an IPS, one should carefully
monitor and tune his/her systems and be aware of
the risks involved. One should also have an in-
depth understanding of his/her network, its traffic,
and both its normal and abnormal characteristics.
It is always recommended to run IPS and active
response technologies in test mode for a while to
thoroughly understand their behaviour [26, 47].

7. Requirements for Effective Prevention

IPS must exhibit the following characteristics
and features to avoid implementation problems
[47].

In-line operation: Only by operating in-line can an
IPS device perform true protection, discarding all
suspect packets immediately and blocking the
remainder of that flow [45].

Reliability and availability: Should an in-line device
fail, it has the potential to close a vital network path
and thus, once again, cause a DoS condition. An

The Nucleus, 45 (1-2) 2008

22 M.F. Zafar et al.

extremely low failure rate is thus very important in
order to maximise up-time, and if the worst should
happen, the device should provide the option to fail
open or support fail-over to another sensor
operating in a fail-over group [34].

Resilience: The very minimum that an IPS device
should offer in the way of High Availability is to fail
open in the case of system failure or power loss.
Active-Active stateful fail-over with cooperating in-
line sensors in a fail-over group will ensure that the
IPS device does not become a single point of
failure in a critical network deployment [26].

Low latency: When a device is placed in-line, it is
essential that its impact on overall network
performance is minimal. Packets should be
processed quickly enough such that the overall
latency of the device is as close as possible to that
offered by a layer 2/3 device such as a switch [46].

High performance: Packet processing rates must
be at the rated speed of the device under real-life
traffic conditions, and the device must meet the
stated performance with all signatures enabled.
Ideally, the detection engine should be designed in
such a way that the “signatures” loaded does not
affect the overall performance of the device [34,
45, 49].

Unquestionable detection accuracy: It is imperative
that the quality of the signatures is beyond
question, since false positives can lead to a DoS
condition [39]. The user MUST be able to trust that
the IDS is blocking only the user selected
malicious traffic. New signatures should be made
available on a regular basis, and applying them
should be quick [34].

Fine-grained granularity and control: Fine grained
granularity is required in terms of deciding exactly
which malicious traffic is blocked. The ability to
specify traffic to be blocked by attack, by policy, or
right down to individual host level is vital. In
addition, it may be necessary to only alert on
suspicious traffic for further analysis and
investigation [26].

Advanced alert handling and forensic analysis
capabilities: Once the alerts have been raised at
the sensor and passed to a central console,
someone has to examine them, correlate them
where necessary, investigate them, and eventually
decide on an action. The capabilities offered by the

console in terms of alert viewing and reporting are
keys in determining the effectiveness of the IPS
product [46].

Understanding the different kinds of protection
provided by Network security technologies is
helpful in deciding what systems are required for
each network. These technologies can be broadly
classified into four categories [50]:

Packet level protection, such as routers’
Access Control Lists (ACL) or stateless
firewalls

Session level protection, such as stateful
inspection firewalls.

Application level protection, such as proxy
firewalls and intrusion prevention systems

File level protection, such as gateway antivirus
systems

Table 2 compares the four categories of
network security technologies. Evaluation of each
category by coverage of protocols/applications,
level of protection, and relative performance
enables organizations to choose the appropriate
network security technologies to protect their
networks.

Table 2. Comparison of network security technology categories.

Packet
Level

Protection

Session
Level

Protection

Application
Level

Protection

File Level
Protection

Examples
Packet
filtering

Stateful
inspection
firewalls

IPS and proxy
firewalls

Gateway
antivirus

Mechanism
Examine
Packet
Header

Examine
Packet

Header and
control
fields

Examine
application

fields

Examine files
inside

application
traffic

Protocol and

Application

Coverage

N. A.
packet
level

Large Medium Small

Protection
Provided

Client-to-
server

and
server-to-

client

Client-to-
server and
server-to-

client

Mainly Client-
to-server

Mainly
server-to-

client

Relative
Performance

High High Medium Low

Packet level protection: Packet level protection,
also known as packet filtering, is one of the most
widely used means of controlling access to a

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 23

network. The concept is simple: determine whether
a packet is allowed by comparing some basic
pieces of information in the packet headers. Cisco
IOS Access Control List (ACL) is one of the most
used packet filters. IPChains is also a popular
packet filter application, which comes bundled with
many versions of Linux.

Two-way communication presents a challenge
for network security based on packet filtering. If
one blocks all incoming traffic, one prevents
responses to outgoing traffic from coming in
disrupting communication. Consequently, one has
to open two holes, one for outgoing traffic and one
for incoming traffic, without enforcing any
association of the incoming traffic with existing
outgoing connections in the network. Packet
filtering thus can allow in crafted malicious packets
that appear to be part of existing sessions, causing
damage to protected resources.

Session level protection: Session level protection
technologies control the flow of traffic between two
or more networks by tracking the state of sessions
and dropping packets that are not part of a session
allowed by a predefined security policy. Firewalls
that implement session-level protection keep state
information for each network session and make
allow/deny decisions based on a session state
table. The most common systems for session level
protection are stateful inspection firewalls.

Note that session level protection technologies
are “session based,” meaning that firewalls go
beyond individual TCP connections to involve
many such connections. Session-level firewalls
support dynamic protocols by identifying port
change instructions in client-server communication
and comparing future sessions against these
negotiated ports. For instance, to track FTP
sessions, the firewall inspects the control
connection, used for issuing commands and
negotiating dynamic ports, and then allows in
various data connections for transferring files.

Because session level protection provides all
the benefits of packet level protection without the
limitations, it renders packet level protection
unnecessary for most networks.

Application level protectiou:

Application level
protection technologies monitor network traffic and
dynamically analyze it for signs of attacks and

intrusions. Within the network security
infrastructure, two common technologies for
application level protection are proxy firewalls and
Intrusion Prevention Systems (IPS).

Proxy firewalls and IPS examine control and
data fields within the application flow to verify that
the actions are allowed by the security policy and
do not represent a threat to end systems. By
understanding application-level commands and
primitives, they can identify content out of the norm
and content that represents a known attack or
exploit. Proxy firewalls and IPS perform IP de-
fragmentation and TCP stream reassembly as well
as eliminating ambiguity within traffic, which can be
used by malicious users trying to conceal their
actions.

Proxy firewalls usually support the common
Internet applications, including HTTP, FTP, telnet,
rlogin, email and news. Yet, a new proxy must be
developed for each new application or protocol to
pass through the firewall, and custom software and
user procedures are required for each application.

IPS generally support a wider range of
protocols and applications, including those
required to protect the network against attacks
from the Internet. New applications can be allowed
through an IPS without requiring changes to the
user workstations. In this way, IPS are more
transparent to the network than proxy firewalls.

Proxy firewalls and IPS can detect certain
viruses or Trojans by looking at application service
fields. For instance, IPS can look at the subject
field, attachment name, or attachment type within
email traffic to detect characteristics of known
viruses. However, application level protection does
not do a detailed analysis at the file level, which is
also required to detect the large number of viruses
in existence.

File level protection: File level protection provides
the ability to extract files within traffic and inspect
them to detect malware, including viruses, worms
or Trojans. A common technology for file level
protection in a network is gateway antivirus.

Gateway antivirus systems scan files that are
embedded in network traffic, including files in
HTTP traffic (web downloads) and files in email
traffic (attachments). If an infected file is detected,
a gateway antivirus system removes it from the

The Nucleus, 45 (1-2) 2008

24 M.F. Zafar et al.

traffic, so it does not affect other users. To scan
files within network traffic, gateway antivirus must
understand a broad range of file encoding
protocols and file compression algorithms.

Figure 1 illustrates the inspection functions that
take place as the packets are analyzed bystateful
firewall for session level protection, Intrusion
Prevention Systems (IPS) for application level
protection and gateway antivirus for file level
protection.

Figure 1. Network packets are inspected by session level
protection, application levelprotection and file level
protection technologies in order to defend the
network from viruses, worms and other network
attacks [50].

8. Available Open Source Intrusion
Prevention Sytems (IPS)

Achieving a security goal in a networked
system requires the cooperation of a variety of
devices, each device potentially requiring a
different configuration. Many information security
problems may be solved with appropriate
mangement of these devices and their interactions,
giving a systematic way to handle the complexity
of real situations [31, 51].

The term "intrusion prevention" has become
prevalent in marketing materials and sales
presentations as commercial vendors develop an
abundance of products (both good and bad) under
this umbrella term. While commercial intrusion
prevention products are often technologically
diverse and contain a rich feature set, they also
often come with a hefty price tag [52].

In this section the description of some free,
open source alternatives for implementing intrusion
prevention systems, has been presented. It looks
at intrusion prevention from a defense in depth
approach, including not only network methods but
also system and application methods [52].

8.1. Snort products

Snort Flexible Response Plug-in: Snort can
perform session sniping through its flexible
response plug-in. This plug-in adds the response
and react keywords to rule creation. When a rule is
triggered, the appropriate action is taken based on
the keywords. If one is using Snort in stealth mode,
he will need an additional interface to send the
responses. Snort flexible response is a quick and
simple solution that uses sessions sniping.
Although it is not an overall enterprise solution, it is
a lightweight method for use in simple
environments [53], [54].

SnortSam: SnortSam is an active response plug-in
for Snort that performs gateway interaction with
various router and firewall devices. SnortSam acts
at the network layer by instructing the gateway to
alter or block traffic for specified amounts of time
based on IP address. SnortSam consists of two
parts: an intelligent agent that runs on the gateway
device and accepts commands, and an output
plug-in for Snort that sends commands based on
triggered rules. The communication between the
output plug-in and agent is secured by an
encrypted TCP session.

The SnortSam agent provides several features
including:

The ability to specify a whitelist of IP
addresses that will never be blocked.

The ability to provide per-rule blocking and
time interval.

The ability to prevent repetitive blocking of the
same IP address.

Twofish encrypted sessions between Snort
and SnortSam.

The ability to multi-thread for faster processing
and simultaneous blocking on multiple
devices.

The ability to log events and send email
notification.

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 25

The ability to scale to larger distributed
networks using client/server architecture.

SnortSam is platform independent and is
actively developed and maintained. It is a stable,
recommended solution for active response [55,
56].

Fwsnort: Fwsnort functions as a transport layer
inline IPS, because it is deployed directly within the
iptables firewall. It works by translating Snort
signatures into their equivalent iptables rulesets;
hence, it will only stop attacks for which there are
Snort signatures. Not all Snort rules are easily
translated, but fwsnort does a good job at
translating about 70% of them. Fwsnort also
accepts Snort rules by the SID value, so one can
add specific rules to iptables ruleset. Iptables can
then either log or block the attacks.

Fwsnort is not bulletproof. Since it uses string
matching, it can easily be evaded with simple
evasion techniques such as fragmentation, URL
encoding, and session splicing. It is still a good tool
to use, however [57, 58].

Snort Inline: Snort Inline is a true IPS that is
deployed between network segments with the
capability to alter or drop packets in real time as
they flow through the system. It runs on a Linux
system and uses iptables packet queuing to collect
and make decisions about packets as they
traverse the system's interfaces. It can also be
used in stealth mode as a bridge between network
segments, so it will not be detected as a hop in the
network. One of the best features of Snort Inline is
its ability to mitigate attacks by altering application
layer data as the packet traverses the system [59].

Hogwash: Hogwash is a Gateway IDS and packet
scrubber based on the Snort IDS that can detect
attacks and filter them out. Hogwash works in
three different modes: IDS, inline packet scrubber,
and honeypot. In IDS mode, it can detect attack
traffic and send TCP resets to end sessions. In
inline packet scrubber mode, it can actively filter
exploits from network traffic. In this mode, it can
send resets, drop the packet, or modify the packet
as it traverses the system. The honeypot mode is
still experimental; however, the concept is that
Hogwash can route attackers to one of several
honeypots that are behind the Hogwash system
while each of these honeypots can have the same
IP and MAC address. Hogwash also has the ability

to perform multi-packet signature matching and
port-scan detection [60].

Hogwash runs on a Linux system that can be
transparently connected to the network. It has the
capability of managing up to 16 different interfaces,
thus protecting several network segments with a
single system. Hogwash handles the packet
forwarding for each network segment, so
remember to disable the kernel IP forwarding [53].

Hogwash also uses a Stackless Control
Protocol to remotely control the Hogwash system.
The transactions are secured with either Twofish
or AES encryption. Remote actions that can be
performed include pinging, gathering statistics, and
transferring files [61].

LAk: LAk is an open source intrusion prevention
system project. It houses a collection of programs,
scripts, and whitepapers on implementing and
operating an open source IPS. The goal of the
project is for users to be able to easily install and
run an IPS in a short amount of time. It also aims
to combat the current media hype generated by
commercial vendors about IPS.

LAk currently consists of a "Getting Started"
guide, a list of prerequisites, and a whitepaper with
installation and configuration instructions. The LAk
IPS is based on iptables and Snort Inline. It
assumes that iptables is installed with IP queuing
enabled. LAk also assumes that Snort Inline is
installed (although it includes a precompiled
binary) and that the latest set of Snort signatures
has been downloaded. LAk IPS is a handy tool that
automates the process of setting up iptables and
Snort Inline [62].

8.2. Miscellaneous products

Modsecurity: Modsecurity is a module that acts as
an intrusion detection and prevention engine for
Web applications. It increases Web application
security by protecting applications from both
known and unknown attacks [63]. Modsecurity sits
inline between the Web client and server to detect
attacks. If it identifies a potential attack, it can
reject the request or perform any number of built-in
active responses. Modsecurity integrates with the
Web server and provides the following features:

The Nucleus, 45 (1-2) 2008

26 M.F. Zafar et al.

Request filtering -- Incoming Web requests are
analyzed inline before being passed to the
Web server or other modules.

Anti-evasion techniques -- Paths and
parameters are normalized before analysis
takes place.

Understanding of the HTTP protocol -- The
engine has a deep understanding of the HTTP
protocol, allowing it to perform very specific
and granulated filtering.

POST payload analysis -- The engine will
intercept and analyze POST methods
contents.

Audit logging -- All requests are logged in full
detail for later analysis.

HTTPS filtering -- The engine can operate with
encrypted sessions because it has access to
the request data after decryption occurs.

Built-in checks -- Other special built-in checks
include URL-encoding validation, Unicode-
encoding validation, and byte-range
verification to detect and reject shellcode.

Rule support -- Modsecurity also supports any
number of custom rules for attack detection
and prevention. These rules are formed using
regular expressions. Negated rules are also
supported.

Modsecurity rules can analyze headers,
cookies, environment variables, server variables,
page variables, POST payload, and script output.
Modsecurity rules can also intercept files that are
being uploaded to the Web server, store uploaded
files on a disk, and execute an external binary to
approve or reject files [64].

The Modsecurity audit log feature captures data
and logs it in text format. This is easy and
convenient to work with; however, when analyzing
large quantities of data, a better method is needed
[65].

Modsecurity is a great tool to use. It is best
coupled with an IDS that is monitoring at the
network level. Modsecurity fills the gap between
the Web server and the application, providing a
great open source solution for Web application
security [66].

LIDS: The Linux Intrusion Detection System (LIDS)
is an intrusion detection and prevention system
that resides within the Linux kernel. It is a security
enhancement to the Linux kernel consisting of a
kernel patch and some admin tools. LIDS
implements mandatory access control (MAC), file
protection, and process protection on the Linux
system by restricting file access, network
operations, raw device access, memory use and
access, and I/O access. LIDS provides the
administrator the ability to define and finely tune
access controls. LIDS also contains a port-scan
detector [67].

LIDS provides protection, detection, and
response within the kernel of the Linux system. It
provides protection in the following ways:

Full file system protection of files and
directories from unauthorized users and
programs including protection from root.

Protection of important processes from being
terminated.

Protection of RAW I/O operations from
unauthorized programs including hard disk and
master boot record (MBR) protection.

LIDS provides detection via the port-scan
detector and by monitoring any unauthorized
system activity. The port-scan detector
functionality is built into the kernel. It can easily
detect tools like Nmap and Nessus. The port-scan
detector works with raw socket disabled, making it
more secure than standard sniffers.

LIDS can provide response in the following
ways:

When a rule violation occurs, LIDS logs a
detailed message about the violation to the
system kernel log file, which is also protected
by LIDS. LIDS logging has an anti-flooding
capability.

Sending log messages via email.

Automatically terminating a user's session that
is in violation of the rules.

The LIDS functionality extends the existing
Linux kernel "immutable" attribute by allowing
administrator to grant or deny specific rights on a
more granular basis with ACLs. He can also use
the capabilities, to remove the Linux "immutable"

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 27

feature all together, thus using LIDS for all file
system protection [68].

The biggest advantage of using LIDS to protect
system is that it can prevent the root user from
tampering with important system controls. This is
significant in the event of a system compromise.
Furthermore, its most important features include
increased file system protection, protection against
direct port access or direct memory access,
protection against raw disk access, and protection
of log files. LIDS can prevent certain system
actions, such as installing a packet sniffer or
changing firewall rules [52].

Grsecurity and PaX: Grsecurity is a Linux security
project that uses a multi-layered detection,
prevention, and containment model. It uses a Role-
Based Access Control (RBAC) system that can
generate least-privilege policies for the entire
system. It also provides the following additional
features:

Change root (chroot) hardening

Full-featured fine-grained auditing

Address space modification protection
provided by the PaX project

Additional randomness in the TCP/IP stack
and process IDs

All alerts and audits support a feature that logs
the IP address of the attacker with the log

Restricted viewing of processes

Integrated local attack response on all alerts

PaX is a separate project that is included in
grsecurity as part of its security strategy [52]. The
PaX project researches various defenses against
the exploitation of software bugs that give the
attacker arbitrary read/write access to the target's
address space. PaX doesn't focus on finding and
fixing the bugs, but rather on prevention and
containment of exploit techniques. Exploit
techniques can affect the target at three different
levels:

Introduce or execute arbitrary code.

Execute existing code out of original program
order.

Execute existing code in original program
order with arbitrary data.

PaX is a patch for the Linux kernel that
implements least-privilege protections for memory.
It flags data memory as non-executable and
program memory as non-writable, and randomly
arranges the program memory. Prevention is
implemented through PaX and hardening certain
sections of the kernel. One must monitor log files
to look for intrusion attempts reported by PaX. An
execution attempt of a service could signify an
attack or compromise. For effective security, these
logs should be correlated with network logs.

PortSentry and PSAD: PortSentry was developed
to detect and respond to port scans on a host.
Because port scans are often the first step of the
attack process, PortSentry monitors the TCP and
UDP ports on a system and responds when a scan
is identified. It has the ability to detect various
types of scans including stealth scans [69].

PortSentry provides three active response
choices:

Insert a null route into the hosts routing table.
This will re-route the scan from the attacker to
a non-existent IP address. The disadvantage
to this type of response is that it increases the
size of the routing table on the host, which
uses more memory. If the attacker is using
random, spoofed source addresses as part of
the attack, this could lead to a DoS condition
on the host.

Insert a firewall rule to block traffic from the
scanning IP address. PortSentry supports ipfw,
ipfilter, ipfwadm, ipchains, and iptables. When
it detects a scan, PortSentry can add the
appropriate rule to the firewall to block the IP
address of the scanning host. Once again, this
can also be used to create a DoS condition for
the host or network. An attacker could spoof
the source address to prevent legitimate
connections.

Add a TCP wrapper rule for the attacking IP
address to the /etc/hosts.deny file. This will
prevent the attacker from connecting to the
target host's services. Although this protection
mechanism isn't as strong, it does alleviate the
potential DoS conditions from the other
options.

The Port Scan Attack Detector (PSAD) runs on
Linux and analyzes iptables firewall logs to detect
port scans and other suspicious traffic. It is

The Nucleus, 45 (1-2) 2008

28 M.F. Zafar et al.

designed to function as a network IDS that uses
iptables firewall log data to block and log packets.
It consists of three system daemons written in Perl
and C.

PSAD features alert messages that include the
source, destination, scanned port range, start and
end times, TCP flags and corresponding nmap
options, as well as email alerting, DShield
reporting, and automatic blocking of the attacking
IP address via iptables. It also utilizes Snort
signatures to detect backdoor scans, DDoS tools,
and advanced port scans such as stealth, FIN, and
Xmas [70].

PSAD also has the ability to passively
fingerprint the remote operating system of the
attacker by using TTL, IP id, TOS, and TCP
window sizes. Combining PSAD with FWSnort and
the iptables string match extension allows you to
detect about 70% of all Snort signatures including
application-level attacks [71].

PSAD addresses some of the limitations of
PortSentry including:

Better firewall integration. PortSentry listens on
ports to detect scans, causes more
administration on the firewall.

Implemented scoring mechanism for scans to
prioritize actions and responses.

Implemented passive fingerprinting.

ICMP probe detection.

Backdoor and DDoS probe detection.

Integrated Whois lookups.

Integrated email alerts.

PortSentry is very portable across many
different Unix systems [72, 73].

OSSIM:

Ossim stands for Open Source Security
Information Management. Its goal is to provide a
comprehensive compilation of tools which, when
working together, grant a network/security
administrator with detailed view over each and
every aspect of his networks/hosts/physical
accessdevices/server/etc [74].

Verification, Integration, Risk Assessment

may be
OSSIM’s most valuable contribution at this time.
Using its correlation engine, OSSIM screens out a

large percentage of false positives, enables to
perform a range of tasks from auditing, pattern
matching and anomaly detection to forensic
analysis in one single platform and offers high level
state indicators that allow guiding inspection and
measuring the security situation of network.
OSSIM is a distribution rather than a product. The
OSSIM aims at intercommunication, making these
processes integrate with each other [31].

OSSIM

integrates a number of powerful open
source security tools in a single distribution. These
include: Snort, Nessus, Ntop, Snortcenter, Acid,
Riskmeter, Spade, RRD, Nmap, P0f, Arpwatch,
etc. These tools are linked together in OSSIM’s
console giving the user a single, integrated
navigation environment. The ability to act as an
IPS (Intrusion Prevention System) based on
correlated information from virtually any source
result in a useful addition to any security
professional [74].

Besides these open source products a number
of commercially available IPS products like
Lanifex’s Event Horizon (EH) [25, 75], McAfee’s
Protection-in-Depth [76], NetScreen-IDP [77],
Cisco IPS [78], Tipping Point IPS [79] are
available.

9. Conclusion

Although the security solutions, mentioned and
discussed above, cover a wide domain of
difficulties currently addressed and focused by
researchers and experts in this area, however,
preventive measures from external attacks is still a
hot issue. Yet there seems to be no “silver bullet”
to the problem. This survey examines the possible
solutions to this problem, provides taxonomies to
classify those solutions and analyzes the feasibility
of those approaches. Applications need to provide
strict enforcement of access control policies,
assurances of secure data handling, consistent
auditing and alarming, secure administration, and
pervasive denial of service protection. Taking
these measures will help protect against
unauthorized access, data loss, and resource
theft. Furthermore, intruders and suspicious
application access trends can be tracked and
reported. Organizations must deploy multiple
security technologies to protect networks against
viruses, worms and other sophisticated attacks.

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 29

References

[1] Technical White Paper, (2002). ISecurity in
Converged Networks. Avaya labs and
services www.avaya.com

[2] Richard Bejtlich (2004). The Tao of Network
Security Monitoring: Beyond Intrusion
Detection. Publisher: Addison-Wesley.

[3] Network security resources and reporting
problems (2006), http://pangea.stanford.edu/

computerinfo /resources /network/security/

[4] Buyer’s Guide for Intrusion Prevention
Systems (IPS). Juniper Networks, Inc. 2004,
1194 North Mathilda Avenue Sunnyvale, CA
94089 USA

[5] P. Barford, V. Yegneswaran and J. Ullrich,
“Internet intrusions: Global characteristics
and prevalence,” in Proceedings of the 2003
ACM SIGMETRICS, (2003).

[6] C. Zou, D. Towsley and W. Gong, “The
performance of internet worm scanning
strategies,” (2003).

[7] P. Kazienko and P. Dorosz, (2004). Intrusion
Detection Systems (IDS) Part I. http://www.
windowsecurity.com/articles/Intrusion_Detect
ion_Systems_IDS_Part_I

[8] J. Wilander and M. Kamkar. A comparison of
publicly available tools for static intrusion
prevention. In Proc. of 7th Nordic Workshop
on Secure IT Systems, 2002.

[9] J. Wilander and M. Kamkar. A comparison of
publicly available tools for dynamic buffer
overflow prevention. In Proc. of 10th Network
and Distributed System Security Symposium,
(2003).

[10] L. A. Grenier. Practical code auditing.
http://www.daemonkitty.net/lurene, (2002).

[11] R. Jones and P. Kelly. Bounds checking for
C. http://www-ala.doc.ic.ac.uk/~phjk/ Bounds
Checking.html, July (1995).

[12] T. M. Austin, S. E. Breach, and G. S. Sohi.
Efficient detection of all pointer and array
access errors. ACM SIGPLAN Notices, 29,
No. 6, 1994.

[13] R. Hastings and B. Joyce. Purify: Fast
detection of memory leaks and access
errors. In Proceedings of the Winter USENIX
Conference (1992).

[14] O. Ruwase and M. S. Lam. A practical
dynamic buffer overflow detector. In
Proceedings of the 11th Network and
Distributed System Security Symposium,
(2004).

[15] C. Cowan, C. Pu, D. Maier, J. Walpole, P.
Bakke, S. Beattie, A. Grier, P. Wagle, Q.
Zhang, and H. Hinton. Stack-Guard:
Automatic detection and prevention of buffer
overflow attacks. In Proceedings of the 7th
USENIX Security Conference, January
(1998).

[16] T.-C. Chiueh and F.-H. Hsu. RAD: A
compile-time solution to buffer overflow
attacks. In Proc. of 21st Intl. Conf.on
Distributed Computing Systems, (2001).

[17] Vendicator. StackShield GCC compiler
patch.
http://www.angelfire.com/sk/stackshield,
(2001).

[18] H. Etoh. GCC extensions for protecting
applications from stack-smashing attacks.
http://www.trl.ibm. com/projects/security/ssp,
June (2000).

[19] M. Frantzen and M. Shuey. StackGhost:
Hardware facilitated stack protection. In
Proceedings of the 10th USENIX Security
Sumposium, August (2001).

[20] C. Cowan, M. Barringer, S. Beattie, G.
Kroah-Hartman, M. Frantzen, and J. Lokier.
FormatGuard: Automatic protection from
printf format string vulnerabilities. In Pro. of
10th USENIX Security Symposium, (2001).

[21] S. Savage, D. Wetherall, A. R. Karlin and T.
Anderson, “Practical network support for IP
traceback,” in SIGCOMM, (2000), pp. 295–
306.

[22] S. Bellovin, “Icmp traceback messages,”
http://www.research.att.com/smb/papers/draf
t-bellovin-itrace-00.txt, (2000).

[23] S. Lin and Tzi-cker Chiueh, (2006) "A Survey
on Solutions to Distributed Denial of Service
Attacks", RPE report, Department of
Computer Science, Stony Brook University,
Stony Brook, US.

[24] C. Brenton and C. Hunt, Mastering Network
Security. Second edition Sybex Inc., UK
(2003).

http://www.avaya.com
http://pangea.stanford.edu/
http://www.daemonkitty.net/lurene
http://www-ala.doc.ic.ac.uk/~phjk/
http://www.angelfire.com/sk/stackshield
http://www.trl.ibm
http://www.research.att.com/smb/papers/draf
t-bellovin-itrace-00.txt

The Nucleus, 45 (1-2) 2008

30 M.F. Zafar et al.

[25] Technical White Paper, (2003). Event
Horizon™: Lanifex Intrusion Detection
Solution., ver. 1.5, © 2003 CSO Lanifex
GmbH.

[26] Technical White Paper, (2004). Intrusion
Prevention Systems. NSS Labs, Inc.733 Lee
St.Des Plaines, US.

[27] P.J. Barry, 2002. Intrusion Detection –
Evolution beyond Anomalous Behavior and
Pattern Matching. Security Essentials
Version 1.4.

[28] R.A. Kemmerer and G. Vigna, Computer, 35,
No. 4 (2002) 27.

[29] T. Wang, B. Suckow and D. Brown, 2001. A
Survey of Intrusion Detection Systems.
Department of Computer Science, University
of California, San Diego San Diego, CA
92093, USA.

[30] J.P. Anderson, (1980). Computer Security
Threat Monitoring and Surveillance. James
P. Anderson Co., Fort Washington. Micki
Krause, Harold F. Tipton, (2006). Handbook
of Information Security Management.
Publisher: CRC Press LLC. ISBN:
0849399475.

[31] M. Anwar, M.F. Zafar, Z. Ahmed, (2007). A
Proposed Preventive Information Security
System. International Conference on
Electrical Engineering (ICEE 2007) , UET
Lahore, Pakistan.

[32] R. Bace and P. Mell, (2001). Special
Publication on Intrusion Detection Systems.
Tech. Report SP 800-31, National Institute of
Standards and Technology, Gaithersburg,
Md.

[33] G. Mansfield, K. Ohta, Y. Takei, N. Kato, Y.
Nemoto, Towards trapping wily intruders in
the large, Computer Networks 34 (2000), pp
659-670.

[34] K. Scarfone and Peter Me (2007), Guide to
Intrusion Detection and Prevention Systems
(IDPS). Recommendations of the National
Institute of Standards and Technology
Computer Security Division, Information
Technology Laboratory, Gaithersburg, MD
20899-8930, US.

[35] D.E. Denning, IEEE Trans. Software Eng.,
13, No. 2 (1987) 222.

[36] A.K. Ghosh, J. Wanken, and F. Charron,
Detecting Anomalous and Unknown
Intrusions Against Programs. Proc. Annual
Computer Security Application Conference
(ACSAC’98), IEEE CS Press, Los Alamitos,
Calif (1998) 259–267.

[37] K. Ilgun, R.A. Kemmerer and P.A. Porras,
IEEE Trans. Software Eng. 21, No.3 (1995)
181.

[38] U. Lindqvist and P.A. Porras,. Detecting
Computer and Network Misuse with the
Production-Based Expert System Toolset.
IEEE Symp. Security and Privacy, IEEE CS
Press, Los Alamitos, Calif. (1999) 146–161.

[39] C. Endorf, E. Schultz and J. Mellander;
(2004). Intrusion Detection & Prevention.
Published by McGraw-Hill.

[40] C. Krügel, T. Toth, Applying Mobile Agent
Technology to Intrusion Detection, ICSE
Workshop on Software Engineering and
Mobility, Toronto 2001, http://www.elet.
polimi.it/ Users/DEI/Sections/Compeng/Gian
Pietro.Picco/ICSE01mobility/papers/
krugel.pdf.

[41] C. Krügel, T. Toth. Distributed Pattern
Detection for Intrusion Detection, Conf. Proc.
of the Network and Distributed System
Security Symposium NDSS, 2002,
http://www.isoc.org/isoc/conferences/ndss/02
/proceedings/papers/kruege.ps.

[42] J.S. Balasubramaniyan, J.O. Garcia-
Fernandez, D. Isaco, E. Spafford, D.
Zamboni, An Architecture for Intrusion
Detection using Autonomous Agents, 14th
IEEE Computer Security Applications
Conference ACSAC ’98, December 1998,
pages 13-24, http://www.cs.umbc.edu/cadip/
docs/tr9805.ps.

[43] D.J. Ragsdale, C.A. Carver, J.W. Humphries,
U.W. Pooh, Adaptation techniques for
intrusion detection and intrusion response
systems, Proceedings of the IEEE
International Conference on Systems, Man
and Cybernetics, 2000, pages 2344-2349,
http:// www.itoc.usma.edu/ragsdale/pubs/
adapt.pdf

[44] A. Orebaugh and E. Cole., Sys. Admin.
Magazine. 14, No 3. (2005) 44.

http://www.elet
http://www.isoc.org/isoc/conferences/ndss/02
/proceedings/papers/kruege.ps
http://www.cs.umbc.edu/cadip/
http://www.itoc.usma.edu/ragsdale/pubs/

The Nucleus, 45 (1-2) 2008

Network security: a survey of modern approaches 31

[45] N. Desai (2003). Intrusion Prevention
Systems: the Next Step in the Evolution of
IDS. Retrieved from www.securityfocus.
com/infocus.

[46] F. Gong (2003), White paper on Intrusion
Prevention: Myths, Challenges, and
Requirements, McAfee Network Protection,
www.mcafee.com.

[47] Marc Willebeek-LeMair (2005) Anatomy of
an Intrusion Prevention System. Tipping
Point, www.tippingpoint.com.

[48] B. Toxen (2003). Real World Linux®
Security: Intrusion Prevention, Detection, and
Recovery, Second Edition Publisher:
Prentice Hall, www.securityfocus.
com/infocus.

[49] S. Suehring and R. Ziegler (2005). Linux
Firewalls, 3rd Edition Published by Novell
Press.

[50] http://www.juniper.net/solutions/literature/whit
e_papers/200063.pdf

[51] J.D. Guttman, A. L. Herzog, Int. J. Inf. Secur.
4 (2005) 29–48, Springer-Verlag.

[52] M. Smith, S. Dukin and K. Tan (2006). A
Design for Building an IPS Using Open
Source Products. System Admin Magazine,
The journal for Unix and Linux system
administrators.

[53] C. Brian. (2004). Snort 2.1 Intrusion
Detection, Second Edition. Syngress
Publishing.

[54] C. Kerry and C. Gerg. 2004. Managing
Security with Snort and IDS Tools. O'Reilly &
Associates.

[55] Snorthttp://www.snort.org/docs/snort_manual
/node21.

[56] SnortSam -- http://www.snortsam.net/.

[57] fwsnort -- http://www.cipherdyne.org/fwsnort/.

[58] Snortconfig:--http://www.shmoo.com/~bmc/
software /snortconfig

[59] Snort Inline -- http://snort-inline. sourceforge.
net/

[60] An Introduction to Gateway Intrusion
Detection Systems: Hogwash GIDS
http://www.cansecwest.com/core02/hogwash
.ppt.

[61] Hogwash -- http://hogwash.sourceforge.net/.

[62] LAk-IPS -- http://lak-ips.sourceforge.net.

[63] Better Living Through Mod Security http://
www.hackinthebox.org/article.php?sid=1286
7

[64] Introducing mod_security -- http://www.
onlamp.com/.

[65] pub/a/apache/2003/11/26/mod_security.html

[66] Web Security Appliance with Apache and
mod_security--http://www.securityfocus.com/
infocus/1739.

[67] ModSecurity -- http://www.modsecurity.org/.

[68] LIDS -- http://www.lids.org.

[69] Overview of LIDS, Part Two http://www.
securityfocus.com/ infocus/ 1502.

[70] Sentry Tools--http://sourceforge.net/projects/
sentrytools.

[71] Grsecurity -- http://www.grsecurity.net.

[72] PSAD -- http://www.cipherdyne.com/psad/.

[73] PortSentry for Attack Detection: Part 1 http://
www.securityfocus.com /infocus/1580

[74] PortSentry for Attack Detection: Part Two
http:// www.securityfocus.com/infocus/1586.

[75] http:// www.ossim.net.

[76] http:// www.lanifex.com/.

[77] McAfee®Protection-in-Depth,www.mcafee

com/.

[78] NetScreen-IDP Juniper Networks www.
juniper.net.

[79] Cisco IPS --www.cisco.com/index.html.

[80] Tipping Point IPS -- www.tippingpoint.com.

http://www.securityfocus
http://www.securityfocus
http://www.juniper.net/solutions/literature/whit
e_papers/200063.pdf
http://www.snort.org/docs/snort_manual
http://www.snortsam.net/
http://www.cipherdyne.org/fwsnort/
http://www.shmoo.com/~bmc/
http://snort-inline
http://www.cansecwest.com/core02/hogwash
http://hogwash.sourceforge.net/
http://lak-ips.sourceforge.net
http://www.hackinthebox.org/article.php?sid=1286
http://www.securityfocus.com/
http://www.modsecurity.org/
http://www.lids.org
http://sourceforge.net/projects/
http://www.grsecurity.net
http://www.cipherdyne.com/psad/
http://www.securityfocus.com

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

