Insight into the Local Atomic Structure Order and Luminescence of Rare Earths


  • L.U. Khan Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME)
  • Z.U. Khan Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Brazil
  • M.A. Umar Department of Physics, National Central University, Taoyuan City, 320 Taiwan, ROC


The rare earth (III) complexes are remarkable photoemitters in visible to near-infrared spectral region, manifesting wide photonic applications in organic light-emitting diodes (OLEDs), telecommunications, optical lasers, display devices, optical quantum memories and medical diagnostics. In order to get detailed insight into the photo-physical characteristics of the luminescent rare earth complexes, it is very important to probe the local chemical environment/electronic structure of the trivalent rare earth ion sites. The X-ray absorption fine structure spectroscopy (XAFS) is very efficient to probe the RE3+ ions from oxidation state/electronic structure in the X-ray absorption near edge spectroscopy (XANES) range to the local atomic structure order around the photoabsorber in extended region (EXAFS). In this work, we explored the electronic and local atomic structure of the typical RE3+ β-diketonate complexes, [Eu(TTA)3(H2O)2] and [Gd(TTA)3(H2O)2], TTA: 3-thenoyltrifluoroacetonate by XANES, EXAFS fit and continuous Cauchy wavelet transform (CCWT) analyses. The optical properties are discussed based on the local structural evidences of RE3+ site obtained from the quantitative analysis of the XAFS data. The visualization of visible emission under irradiation with hard X-ray beam demonstrated that the [Eu(TTA)3(H2O)2] complex can be an efficient new generation X-ray organic scintillator.


J.C.G. Bünzli, “On the design of highly luminescent lanthanide complexes,” Coordination Chemistry Reviews, vol. 293-294, pp. 19-47, June, 2015.

M. Pan, W.M. Liao, S.Y. Yin, S.S. Sun, and C.Y. Su, “Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies,” Chemical Reviews, vol. 118, no. 18, pp. 8889-8935, Sep. 2018.

K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chemical Reviews, vol. 102, no. 6, May, 2002.

J.F.C.B. Ramalho, L.D. Carlos, P.S. André, and R.A.S. Ferreira, “mOptical sensing for the internet of things: A smartphone‐controlled platform for temperature monitoring,” Advance Photonics Research vol. 2, no. 6, pp. 2000211, June, 2021.

V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, and H.C. Swart, “Rare earth doped zinc oxide nanophosphor powder: A future material for solid state lighting and solar cells,” ACS Photonics, vol. 4, no. 11, Oct., 2017.

Z.U. Khan, M.K. Uchiyama, L.U. Khan, and K. Araki, “Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging,” Journal of Material Chemistry B, vol. 10, no. 2, pp. 247-261, Jan., 2022.

D.A. Atwood, The Rare Earth Elements: Fundamentals and Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

G.F. de Sa´, O.L. Malta, C. de Mello Donega´, A.M. Simas, R.L. Longo,

P.A. Santa-Cruz, E.F. da Silva Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coordination Chemistry Reviews, vol. 196, pp. 165-195, 2000.

K. Binnemans, “Lanthanide-Based Luminescent Hybrid Materials,” Chemical Reviews, vol. 109, no. 9, pp. 4283-4374, Sep. 2009.

D. Manzani, K. Nigoghossian, M.F. Iastrensk, G.R. Coelho, M.V. dos Santos, L.J.Q. Maia, S.J.L. Ribeiro, and M.G. Segatelli, “Luminescent silicone materials containing Eu3+-complexes for photonic applications,” Journal of Material Chemistry C, vol. 6, no. 30, July, 2018.

L.U. Khan, H.F. Brito, J. Hölsä, K.R. Pirota, D. Muraca, M.C.F.C. Felinto, E.E.S. Teotonio, and O.L. Malta, “Red-green emitting and superparamagnetic nanomarkers containing Fe3O4 functionalized with calixarene and rare earth complexes,” Inorganic Chemistry, vol. 53, no. 24, pp. 12902-12910, Dec., 2014.

R.T. Moura, A.N.C. Neto, R.L. Longo, and O.L. Malta, “On the calculation and interpretation of covalency in the intensity parameters of 4f-4f transitions in Eu3+ complexes based on the chemical bond overlap polarizability,” Journal of Luminescence, vol. 170, part 2, pp. 420-430, Feb., 2016.

L. Blois, A.N.C. Neto, O.L. Malta, and H.F. Brito, “The role of the Eu3+ 7F1 level in the direct sensitization of the 5D0 emitting level through intramolecular energy transfer,” Journal of Luminescence, vol. 247, Article No. 118862, July, 2022.

J. Fang, H. You, J. Chen, J. Lin, and D. Ma, “Memory devices based on lanthanide (Sm3+, Eu3+, Gd3+) complexes,” Inorganic Chemistry, vol. 45, no. 9, pp. 3701-3704, May, 2006.

L. U. Khan, Z. U. Khan, L. Blois, L. Tabassam, H. F. Brito and S. J. A. Figueroa, “A Strategy to Probe the Local Atomic Structure of Luminescent Rare Earth Complexes by XANES Simulation Using Machine Learning Based PyFitIt Approach” Inorganic Chemistry, vol. 62, no. 6, 2738–2750, Jan. 2023.

J. Terry, M.L. Lau, J. Sun, C. Xu, B. Hendricks, J. Kise, M. Lnu, S. Bagade, S. Shah, P. Makhijani, A. Karantha, T. Boltz, M. Oellien, M. Adas, S. Argamon, M. Long, and D.P. Guillen, “Analysis of extended X-ray absorption fine structure (EXAFS) data using artificial intelligence techniques,” Applied Surface Science, vol. 547, Article No. 149059, May, 2021.

B. Ravel, and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” Journal of Synchrotron Radiation, vol. 12, part. 4, pp. 537-541, July, 2005.

C. Vorwerk, B. Aurich, C. Cocchi, and C. Draxl, “Bethe-Salpeter equation for absorption and scattering spectroscopy: Implementation in the exciting code,” Electronic Structure, vol. 1, no. 3, Article No. 037001 Aug., 2019.

O. Bunău and Y. Joly, “Self-consistent aspects of X-ray absorption calculations,” Journal of Physics: Condensed Matter, vol. 21, no. 34, Article No. 345501, Aug., 2009.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” Journal of Physics Condensed Matter, vol. 21, no. 39, Article No. 395502, Sep., 2009.

K. Hatada, F. Iesari, L. Properzi, M. Minicucci, and A. di Cicco, “New graphical user interface for EXAFS analysis with the GNXAS suite of programs,” Journal of Physics: Conference Series, 712, Article No. 012002, 2016.

M. Newville, “Larch: An analysis package for XAFS and related spectroscopies,” Journal of Physics: Conference Series, 430, Article No. 012007, 2013.

R. L. McGreevy, and L. Pusztai, “Reverse Monte Carlo Simulation: A new technique for the determination of disordered structures,” Molecular Simulation, vol. 1, no. 6, pp. 359-367, Dec. 1988.

A. Martini, S.A. Guda, A.A. Guda, G. Smolentsev, A. Algasov, O. Usoltsev, M.A. Soldatov, A. Bugaev, Yu. Rusalev, C. Lamberti, A.V. Soldatov, “PyFitit: The software for quantitative analysis of XANES spectra using machine-learning algorithms,” Computer Physics Communications, vol. 250, Article No. 107064, Nov. 2020.

J. Timoshenko, C.J. Wrasman, M. Luneau, T. Shirman, M. Cargnello, S.R. Bare, J. Aizenberg, C.M. Friend, and A.I. Frenke, “Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning,” Nano Letter, vol. 19, no. 1, pp. 520-529, Dec., 2019.

M. Harfouche, M. Abdellatief, Y. Momani, A. Abbadi, M. Al Najdawi, M. Al Zoubi, B. Aljamal, S. Matalgah, L. U. Khan, A. Lausi, and G. Paolucci, “Emergence of the first XAFS/XRF beamline in the Middle East: providing studies of elements and their atomic/electronic structure in pluridisciplinary research fields,” Journal of Synchrotron Radiation, vol. 29, part, 4, pp. 1107-1113, July, 2022.

V. Vallet, A. Fischer, Z. Szabó, and I. Grenthe, “The structure and bonding of Y, Eu, U, Am and Cm complexes as studied by quantum chemical methods and X-ray crystallography,” Dalton Transactions, vol. 39, issue, 33, pp. 7666-7672, July, 2010.

N. Hasan, and K. Iftikhar, “Synthesis, crystal structure and photoluminescence studies of [Eu(dbm)3(impy)] and its polymer-based hybrid film,” New Journal of Chemistry, vol. 43, issue, 6, pp. 2479-2489, Jan., 2019.

C.F. Bueno, A.Y. Ramos, A. Bailly, E. Mossang, and L.V.A. Scalvi, “X-ray absorption spectroscopy and Eu3+-emission characteristics in GaAs/SnO2 heterostructure,” SN Applied Sciences, vol. 2, Article No. 1579, Aug., 2020.

H. Asakura, S. Hosokawa, K. Teramura, and T. Tanaka, “Local structure and L1 - and L3-Edge X-ray absorption near edge structures of middle lanthanoid elements (Eu, Gd, Tb, and Dy) in their complex oxides,” Inorganic Chemistry, vol. 60, issue, 13, pp. 9359-9367, Jul. 2021.

L.U. Khan, N. Jabeen, I. Jabbar, S. Jamil, A. Kanwal, Z. Akhter, M. Usman, M.Z. Abid, and M. Harfouche, “Investigating local structure of ion-implanted (Ni2+) and thermally annealed rock salt CoO film by EXAFS simulation using evolutionary algorithm,” ACS Applied Energy Materials, vol. 4, no. 3, pp. 2049-2055, Feb., 2021.

S.D. Kelly, K.M. Kemner, J.B. Fein, D.A. Fowle, M.I. Boyanov, B.A. Bunker, and N. Yee, “X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions,” Geochimica Cosmochimica Acta, vol. 66, no. 22, pp. 3855-3871, Nov., 2002.

M. Muñoz, P. Argoul, and F. Farges, “Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach,” American Mineralogist, vol. 88, no. 4, pp. 694-700, Apr. 2003.

K. Binnemans, “Interpretation of europium (III) spectra,” Coordination Chemistry Reviews, vol. 295, pp. 1-45, July, 2015.

L.U. Khan, L.F.M. Zambon, J.L. Santos, R.V. Rodrigues, L.S. Costa, D. Muraca, K.R. Pirota, M.C.F.C. Felinto, O.L. Malta, and H.F. Brito, “Red-emitting magnetic nanocomposites assembled from Ag-decorated Fe3O4@SiO2 and Y2O3:Eu3+: Impact of iron-oxide/silver nanoparticles on Eu3+ emission,” Chemistry Select, vol. 3, no. 4, pp. 1157-1167, Jan., 2018.




How to Cite

L. U. Khan, Z. U. Khan, and M. A. Umar, “Insight into the Local Atomic Structure Order and Luminescence of Rare Earths”, The Nucleus, vol. 60, no. 1, pp. 78–85, Jun. 2023.