# Computing Shortest Path in a Single Valued Neutrosophic Hesitant Fuzzy Network

## Abstract

In engineering, computer sciences and many other applied sciences, finding shortest path in a network

is one of the famous problems. The aim of this manuscript is to develop a novel algorithm for finding

shortest path in a network where nodes and edges have some uncertainty. Firstly, the concept of singlevalued

neutrosophic hesitant fuzzy graph (SVNHFG) has been introduced with some related graph

theoretic results. Some examples are provided to understand the defined concepts. Then, the new

algorithm for solving shortest path problems (SPPs) has been introduced followed by a flowchart for a

stepwise description. A numerical example is provided in the environment of SVNHFGs to demonstrate

the proposed algorithm. The advantages of proposed method over the existing techniques are also

studied.

## References

R. Dial, F. Glover, D. Karney and D. Klingman, â€ŸA computational analysis of alternative algorithms and labeling techniques for finding shortest path treesâ€, Networks, vol. 9, no. 3, pp. 215-248, 1979.

G.Y. Handler and I. Zang, â€ŸA dual algorithm for the constrained shortest path problemâ€, Networks, vol. 10, no. 4, pp. 293-309, 1980.

Z. Teradata, â€ŸSelected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithmsâ€, Int. J Ap. Mat. Com-pol., vol. 17, no. 2, pp. 269-287, 2007.

S. Okada and S. Soper, â€ŸA shortest path problem on a network with fuzzy arc lengthsâ€, Fuzzy Set Syst., vol. 109, no. 1, pp. 129-140, 2000.

K.C. Lin and M.S. Chern, â€ŸThe fuzzy shortest path problem and its most vital arcsâ€, Fuzzy Set Syst., vol. 58, no. 3, pp. 343-353, 1993. [6] Y. Deng, Y. Chen, Y. Zhang and S. Mahadevan, â€ŸFuzzy Dijkstra algorithm for shortest path problem under uncertain environmentâ€, Appl. Soft. Comput., vol. 12, no. 3, pp. 1231-1237, 2012.

S.N. Chuang and J.Y. Kung, â€ŸThe fuzzy shortest path length and the corresponding shortest path in a networkâ€, Comp. Oper. Res., vol. 32, no. 6, pp. 1409-1428, 2005. [8] S. Broumi, A. Bakal, M. Talea, F. Smarandache and L. Vladareanu. â€œApplying Dijkstra algorithm for solving neutrosophic shortest path problemâ€, Int. Conf. Adv. Mechatronic Syst., vol. 2, pp. 412-416, November 2016. [9] S. Broumi, A. Bakal, M. Talea, F. Smarandache and L. Vladareanu, â€œComputation of shortest path problem in a network with SV-trapezoidal neutrosophic numbersË®, Int. Conf. Adv. Mechatronic Syst., vol. 2, pp. 417-422, November 2016. [10] S. Broumi, A. Bakal, M. Talea, F. Smarandache and M. Ali, â€ŸShortest Path Problem under Bipolar Neutrosophic Settingâ€, Appl. Mech. Mater, vol. 859, pp. 59-66, 2017. [11] S. Broumi, A. Bakal, M. Talea, F. Smarandache and K.K. PK, â€ŸShortest path problem on single valued neutrosophic graphsâ€, Infinite Study, vol. 2, no. 1, pp. 1-6, 2017. [12] S. Broumi, A. Bakal, M. Talea, F. Smarandache, K.K. Kishore and R. Sahin, â€ŸShortest path problem under interval valued neutrosophic settingâ€, J. Fundam. Appl. Sci., vol. 10, no. 4, pp. 168-174, 2018. [13] S. Broumi, A. Bakal, M. Talea, F. Smarandache and K. Ullah, â€ŸBipolar Neutrosophic Minimum Spanning Treeâ€, Infinite Study, vol. 1, pp. 2, 2018.

J. Ye, â€ŸSingle-valued neutrosophic minimum spanning tree and its clustering methodâ€, J Intell. Syst., vol. 23, no. 3, pp. 311-324, 2014.

L.A. Zadeh, â€ŸFuzzy setsâ€, Inf. Control., vol. 8, no. 3, pp. 338-353, 1965.

K.S. Atanassov, â€ŸIntuitionistic fuzzy sets.â€ Fuzzy sets and Syst., vol. 20, no. 1, pp. 87-96, 1986. [17] Mukherjee, Anjan and S. Sarkar, "Several similarity measures of interval valued neutrosophic soft sets and their application in pattern recognition problems", Neutrosophic Sets Syst., vol. 6, pp. 55-61, 2014. [18] W. Haibin, F. Smarandache, Y. Zhang, and R. Sunderraman, â€ŸSingle valued neutrosophic setsâ€, Infinite Study, vol. 17, no. 1, pp. 10, 2010.

B.C. Cuong, â€ŸPicture fuzzy setsâ€, J Comp. Sci. Cyberne., vol. 30, no. 4, pp. 409, 2014.

T. Mahmood, K. Ullah, Q. Khan and N. Jan, â€ŸAn approach towards decision making and medical diagnosis problems using the concept of spherical fuzzy setsâ€, Neural Comput. Appl., vol. 31, no. 11, pp. 7041-7053, 2018.

Muhammad Saad et al. / The Nucleus 56, No. 3 (2019) 123-130

K. Ullah, T. Mahmood and N. Jan, â€ŸSimilarity Measures for T-Spherical fuzzy sets with applications in pattern recognitionâ€, Symmetry, vol. 10, no. 6, pp. 193, 2018.

V. Torra, â€ŸHesitant fuzzy setsâ€, Int. J Intell. Syst., vol. 25, no. 6, pp. 529-539, 2010. [23] K. Ullah, Mahmood, N. Jan, S. Broumi S and Q. Khan, â€ŸOn Bipolar-valued hesitant fuzzy sets and their applications in multi-attribute decision makingâ€, The Nucleus, vol. 55, no. 2, pp. 93-101, 2018. [24] T. Mahmood, K. Ullah, Q. Khan and F. Smarandache, â€ŸSome aggregation operators for bipolar-valued hesitant fuzzy informationâ€, J Fundam. Appl. Sci., vol. 10, no. 4, pp. 240-245, 2018. [25] T. Mahmood, J. Ye, and Q. Khan, â€ŸVector similarity measures for simplified neutrosophic hesitant fuzzy set and their applicationsâ€, J Inequ. Spec. Func., vol. 7, no. 4. pp. 176-194, 2016.

T. Mahmood and M. Munir, â€ŸOn bipolar fuzzy subgroupsâ€, World Appl. Sci. J, vol. 27, no. 12. pp. 1806-1811, 2013.

Q. Khan, T. Mahmood and J. Ye, â€ŸMultiple attribute decision-making method under hesitant single valued neutrosophic uncertain linguistic environmentâ€, Infinite Study, vol. 8, no. 2, pp. 1-17, 2017.

N. Jan, L. Zedam , T. Mahmood, K. Ullah, Z. Ali, â€ŸMultiple attribute decision making method under linguistic cubic informationâ€, J Intell. Fuzzy Syst., vol. 36, no. 1, pp. 253-269, 2019.

A. Kaufmann, â€ŸIntroduction Ã la thÃ©orie des sous-ensembles flous Ã l'usage des ingÃ©nieursâ€, Ã‰lÃ©mentsthÃ©oriques de base, vol. 1, pp. 41-189, 1973.

A. Rosenfeld, â€ŸFuzzy graphs, in Fuzzy sets and their applications to cognitive and decision processesâ€, Elsevier, 1975.

R. Parvathi and M. Karunambigai, â€ŸIntuitionistic fuzzy graphs, in Computational Intelligence, Theory and Applicationsâ€, Springer, 2006.

R. Parvathi, M. Karunambigai and K. Atanassov. â€ŸOperations on intuitionistic fuzzy graphsâ€, Fuzzy Syst. IEEE Int. Conf. Fuzzy Syst., vol. 51, no. 5, pp. 1396-1409, 2009.

R. Parvathi, S. Thilagavathi and M. Karunambigai, â€ŸIntuitionistic fuzzy hypergraphsâ€, Cyberne. Info. Tech., vol. 9, no. 2, pp. 46-53, 2009. [34] R. Parvathi, S. Thilagavathi, G. Thamizhendhi and M.G. Karunambigai, â€ŸIndex matrix representation of intuitionistic fuzzy graphsâ€, Notes Intuitionistic Fuzzy Sets, vol. 20, no. 2, pp. 100-108, 2014.

G. Pasi, R. Yager, and K. Atanassov. â€ŸIntuitionistic fuzzy graph interpretations of multi-person multi-criteria decision makingâ€, 2nd Int. IEEE Conf. Gen Net Appro. Intell. Syst., vol. 2, pp. 434-439, 2004.

S.S. Dhavudh and R. Srinivasan, â€ŸIntuitionistic fuzzy graphs of second typeâ€, Adv. Fuzzy Math., vol. 12, no. 2, pp. 197-204, 2017.

B. Davvaz, N. Jan, T. Mahmood and K. Ullah, â€ŸIntuitionistic fuzzy graphs of nth type with applicationsâ€, J Intell. Fuzzy Syst., vol. 36, no. 4, pp. 3923-3932, 2018. [38] Yaqoob, Naveed, M. Gulistan, S. Kadry and H.A. Wahab, â€ŸComplex intuitionistic fuzzy graphs with application in cellular network provider companiesâ€, J Math., vol. 7, no. 1, pp. 35, 2019. [39] Hussain, S. Satham, R.J. Hussain, Y.B Jun and F. Smarandache, â€ŸNeutrosophic bipolar vague set and its application to neutrosophic bipolar vague graphsâ€, Neutrosophic Sets Syst., vol. 28, no. 1, pp. 8, 2019. [40] S. Broumi, M. Talea, A. Bakali and F. Smarandache, â€ŸSingle valued neutrosophic graphsâ€, J New theory, vol. 10, pp. 86-101, 2015. [41] S. Broumi, M. Talea, A. Bakali and F. Smarandache, â€ŸInterval valued neutrosophic graphsâ€, Crit. Rev., vol. 10, pp. 5-33, 2016. [42] S. Broumi, M. Talea, A. Bakali and F. Smarandache, â€ŸOn strong interval valued neutrosophic graphsâ€, Crit. Rev., vol. 12, pp. 49-71, 2016. [43] S. Broumi, K. Ullah, A. Bakali and M. Talea, â€ŸNovel system and method for telephone network planning based on neutrosophic graphâ€, Infinite Study, vol. 10, no. 4, pp. 403-434, 2018. [44] M. Gulistan, N. Yaqoob, Z. Rashid, F. Smarandache and H. A. Wahab, â€ŸA study on neutrosophic cubic graphs with real life applications in industriesâ€, Symmetry, vol. 10, no. 6, pp. 203, 2018.

C. Zhang and D. Li, â€ŸHesitant fuzzy graph and its application in multi-attribute decision makingâ€, Int. J Patran. Recogn. vol. 30, no. 11, pp. 1012-1018, 2017. [46] Rashid, Sheikh, N. Yaqoob, M. Akram and M. Gulistan, â€ŸCubic graphs with applicationâ€, Int. J Anal. Applications, vo. 16, no. 5, pp. 733-750, 2018.

J. Ye, â€ŸMultiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environmentâ€, J Intell. Fuzzy. Syst., vol. 24, no. 1, pp. 23-36, 2015.

## Downloads

## Published

## How to Cite

*The Nucleus*, vol. 56, no. 3, pp. 123–130, Mar. 2020.