ON DOMINATION NUMBER OF CARTESIAN PRODUCT OF EVEN CYCLES
DOI:
https://doi.org/10.71330/thenucleus.2011.819Abstract
Let γ(G) denote the domination number of the graph G and let γ(GH) denote the domination number of the Cartesian product of the graphs and . Here in this note; let denote the cycle with three vertices and similarly, let denote the cycle with n vertices. The domination number of the Cartesian product of two even cycles and is characterized here, wherem< , with such that G H C3 Cn Cm Cn n m ≥ 4 m n mn γ(C C )= 4 if and only if 2 divides mn 4 , that is, iff mn 2 | 4References
V. G. Vizing, Vychisl, Sistemy 90, 63 (1963)
V. G. Vizing, Uspehi Mat. Nauk 23 (1986)
M. El-Zahar and C. M. Pareek, Ars Combin.
(1991) 223.
R.J. Faudree and R. H. Schelp, Congr.
Numer. 79 (1990) 29.
W. T. Tutte, Graph Theory, Cambridge
University Press (2001).
M. S. Jacobson and L. F. Kinch, J. Graph
Theory 10 (1986) 97.
J.A. Bondy and U.S.R. Murty, Graph Theory,
Springer (2010).
J.A. Gallian, Electronic J. Combinatorics,
DS6 (Jan.3, 2007) 1.
S. Klavzar and N. Seifter, Discrete Applied
Mathematics 59 (1995) 97.
D. Gonçalves, A. Pinlou, M. Rao and S.
Thomassé, The Domination Number of
Grids, 2011arXiv1102.5206G
A. Klobucar, Mathematical Communications
(2004) 35.
Downloads
Published
How to Cite
Issue
Section
License
For all articles published in The Nucleus, copyright is retained by the authors. Articles are licensed under an open access licence [CC Attribution 4.0] meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited properly.