CHARACTERIZATION AND ANALYSIS OF PEROVSKITE OXIDE Sr2FeCoO6 SYNTHESIZED BY GEL-COMBUSTION PROCESS

S. K. Durrani, N. Hussain, K. Saeed, N. Ahmad, N. K. Qazi, M. Ahmad, M. Siddique

Abstract


The microscopic and well-dispersed strontium iron cobalt based (SrFe0.5Co0.5O3) perovskite oxide powders have been synthesized by nitrate-citrate gel-combustion process with stiochiometeric composition variation of metal nitrate salts and citric acid. Crystallinity and phase analysis were performed by X-ray diffraction (XRD). Inspection of XRD patterns revealed that almost pure single phase SrFe0.5Co0.5O3 cubic Pm3m symmetry was obtained. Morphology of sintered specimens was examined by scanning electron microscopy (SEM). It was observed that grain size of sintered samples increases with calcination temperature. XRD and SEM observations revealed that the crystal formation and morphology of SrFe0.5Co0.5O3 oxide were dependent on the precursors and pH of precursor solutions. Thermal decomposition of gel precursor was investigated by thermogravimetric analysis (TG/DTA).57Fe Mössbauer spectroscopic studies on assynthesized and calcined specimens have confirmed the uniform dispersion of Fe3+ ions in the tetrahedral framework of SrFe0.5Co0.5O3.

Full Text:

PDF

References


Y. Sasaki, Y. Doi and Y. Hinatsu, J. Mater.

Chem. 12 (2002) 2361.

M.T. Anderson, K. B. Greenwood, G.A.

Taylor and K.R. Poeppelmeier, Prog. Solid

State Chem. 22 (1993) 197.

A. Maignan, C. Martin, N. Nguyen and B.

Raveau, Solid State Sci. 3 (2001) 57.

Y. Teraoka H. M. Zhang, K. Okamoto,

N. Yamazoe, Mater. Res. Bull. 23 (1988) 51.

B. Ma, U. Balachandran and J. H. Park, Solid

State Ionics 83 (1996) 65.

J. B. Goodenough and J. M. Longo, in: K II.

Hellwege (Ed.), Landolt-Bömstein Tabellen,

New Series III 4a, Springer- Verlag, Berlin,

(1970).

P. Hagenmuller, Proc. Indian. Acad. Sci.

(Chem. Sci) 92 (1983) 1.

D. W. Johnson, Jr., in “Advances in

Ceramics: Ceramic Powder Science; Vol. 21

American Ceramic Society (1987).

L. P. Zhou, J. Xu, X.Q. Li and F. Wang,

Mater. Chem. Phys. 97 (2006) 137.

L. V. Hampden and M.J. Smith, Chemistry of

Advanced Materials: An Overview; Wiley

VCH: New York, (1998).

P. He, X. Shen and H. Gao, J. Colloid

Interface Sci. 284 (2005) 510.

C. H. Lu and H. C. Wang, J. Eur. Ceram.

Soc. 24 (2004) 717.

A. Varma, A. S. Rogachev, A.S. Mukasyan

and S. Hwang, Adv. Chem. Eng. 24 (1998)

R. Q. Chu and Z.J. Xu, J. Electroceram. 21

(2008) 778.

J. S. Thompson, J. Chem. Edu. 65 (1988)

G. Groβe, MOS-90 Version 2.2 Manual and

Program Document Second Edition March

(1992).

S. K. Durrani, A.H. Qureshi, S. Qayyum and

M. Arif. J. Therm. Anal. Calorimetry 95

(2009) 87.

S. K. Durrani, J. Akhtar, M. A. Hussain, A. H.

Qureshi, M. Arif and M. Ahmad, Mater.

Chem. Phys, 100 (2006) 324.

Y.M. Hon, K. Z. Fung and M. H.Hon, J. Eur.

Ceram. Soc. 24 (2001) 515.

K. Suryanarayana, B.N. Das, H. B. Gon and

K. V. Rao, J. Mat. Sci. Lett. 12 (1993) 1210.

J. W. Visser, J. Appl. Crystallogr. 2 (1969)

JCPDS No. 46-0335, International Centre for

Diffraction Data (2002).

K. Nomura, K. Tokumistu, T. Hayakawa and

Z. Homonnay, J. Radioanal. Nucl. Chem.

(2000) 69.


Refbacks

  • There are currently no refbacks.