PHYSICAL MASS TRANSFER MODEL AND SCALE-UP DESIGN PROCEDURE FOR AEROBIC BIOREACTORS

Z. Nawaz, N. A. Sheikh, J. R. Khan

Abstract


The scale-up design procedure based on new physical mass transfer model aerobic bioreactors is developed. This scale-up procedure can be used to determine the disc surface area needed to prevent an oxygen limitation or to obtain a specific degree of treatment. In contrast to the empirical and earliest rotating biological contactors performance model, a major advantage of the physical mass transfer model design is the prediction of the onset of oxygen limiting conditions since it accounts for the fact that low dissolved oxygen concentrations can limit the growth rate of the attached microorganisms.

Full Text:

PDF

References


W. W. Eckenfelder, Y. Argaman and E. Miller, Environmental Program, 8, No.1, (1989) 40.

Envirex Inc., Specific RBC Process Design Criteria. Biological Treatment Products Group, Waukesha, Wiscosin, USA. (1989).

M. G. Trulear, and W. G. Characklis, J. Wat. Pollut. Cont. Fed., 54, No.9. (1982) 1288.

R. F. Weston, Inc., Review of RBC Performance and Design Procedures. EPA-600/2-85/033, U.S. Environmental Protection Agency (EPA), Cincinnati, Ohio (1985) 13.

A. Bisio, Introduction to Scaleup. In Scaleup of Chemical Processes, A. Bisio and R. L. Kable (Eds.), Wiley-Interscience, New York, (1985).

H. Schlichting, Boundary Layer Theory, McGraw-Hill, Inc., New York, (1968) 93.

D. M. Himmelblau, Mathematical Modeling, In Scaleup of Chemical Processes, A. Bisio and R. L. Kabel (Eds.), Wiley-Interscience, New York (1985) 34.

K. H. Lin, Reaction Kinetics, Reactor Design, and Thermodynamics. In Perry’ s Chemical Engineers’ Handbook, 6th Ed., R. H. Perry and D. Green (Eds.), McGraw- Hill, Inc., New York (1984).

D. B. Spengel, and D. A. Dzombak, Wat. Environ. Res., 64, No.3 (1992) 223.

J. Lagnese, Use of Supplemental Air to Correct an Oxygen Limitation Condition of an RBC System. In Proceedings of the First National Symposium / Workshop on Rotating Biological Contactor Technology, Champion, Pennsylvania, USA, February 4 – 6, (1980), 611.

F. L. Evans, J. Wat. Pollut. Cont. Fed., 57, No.11 (1985) 1094.

Metcalf and Eddy, In “Wastewater Engineering, Treatment, Disposal, and Reuse”, 2nd Ed., Mcgraw-Hill, Inc., New York (1979).

J. A. Hitdlebaugh, and R. D. Miller, J. Wat. Pollut. Cont. Fed., 53, No.8 (1981) 1283.

B. E. Rittmann, Biotechnol. Bioeng., 24, No.2 (1982) 501.

J. H. Clark, E. M. Moseng and T. Asano, J. Wat. Pollut. Cont. Fed., 50, No.5 (1978) 896.

Autotrol Corporation, Design Manual for Rotating Biological Contractors. Envirex Inc, Waukesha, Wisconsin, USA (1979).

Nalco Chemical Company. The Nalco Water Handbook, 2nd Ed., F. N. Kemmer (Ed.), McGraw-Hill, Inc., New York (1988).

J. E. McAliley, A Pilot Plant Study of a Rotating Biological Surface for Secondary Treatment of Unbleached Kraft Mill Waste. Tappi, Vol. 57, No.9 (1974) 106.

S. Ghazimoradi, Mathematical Modelling of Aerobic Rotating Biological Contactors for Wastewater Treatment, Ph.D. Thesis, University of Manchester, Institute of Science and Technology (UMIST), Manchester, UK. (1999).

J. Fomularo, J. A. Mueller and T. Mulligan, J. Wat. Pollut. Cont. Fed., 50, No. 4 (1978) 653.

R. C.Brenner, J. A. Heidman and E. J. Opatken, Design Information on Rotating Biological Contactors. EPA-600/2-84-106, U.S. Environmental Protection Agency, Cincinnati, Ohio, 6 (1984).

E. Lloyd Brownell and H. Edwin Young, Process Equipment Design (2004) 141.


Refbacks

  • There are currently no refbacks.