MHD Boundary Layer Flow of Micropolar Fluids due to Porous Shrinking Surface with Viscous dissipation and Radiation

Authors

  • H. Waqas Department of Mathematics, Govt College University Faisal Abad (Layyah Campus), Pakistan
  • S. Hussain Punjab Higher Education Department, College Wing, Lahore, Pakistan.
  • S. Khalid Department of Mathematics, Govt College University Faisal Abad (Layyah Campus), Pakistan

Abstract

The mathematical analysis and numerical solution for the flow of micropolar fluids owing to shrinking boundary is considered in the presence of magnetic field and thermal radiation. The parametric study of the problem demonstrates the effects of magnetic field, suction, micropolar material parameter and thermal radiation on velocity, microrotation and temperature. The mathematical model of the problem is transformed to non-dimensional form to obtain numerical solution. The results have been obtained for several representative values of the material parameters d1, d2 and d3, heat source parameter l and magnetic parameter M, suction/injection parameter S, Eckert number Ec, Radiation parameter Rn and Prandtl number Pr . The flow speed and microrotation are slowed with incremented inputs of micropolar parameter d1. The fluid temperature increases with radiation parameter but it diminishes against suction.

References

A.C. Eringen, “Theory of micropolar fluidsâ€, J. Math. Mech., vol. 16, pp. 1–18, 1966.

S. Baag, S.R. Mishra, G.C. Dash and M.R. Acharya, “Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reactionâ€, J. King Saud Uni – Engg. Sci., vol. 29, pp. 75–83, 2017.

H.S. Takhar, R. Bhargava, R.S. Agrawal and A.V.S. Balaji, “Finite element solution of micropolar fluid flow and heat transfer between two porous discsâ€, Int. J. Engg. Sci., vol. 38, pp. 1907-1922, 2000.

E.M. Abo-Eldahab and M.A. El-Aziz, “Flow and heat transfer in micropolar fluid past a stretching surface embedded in a non-Darcian porous medium with uniform free streamâ€, Appl. Math. Comput.,

vol. 162, pp. 881-899, 2005.

H. Sajjad, A.K. Muhammad and S. Muhammad, “Hydromagnetic flow of micropolar fluid between two horizontal plates, both the plates being stretching sheetsâ€, World Appl. Sci. J., vol. 28, pp. 1888-1895, 2013.

R.N. Barik and G.C. Dash. “Chemical reaction effect on peristaltic motion of micropolar fluid through a porous medium with heat absorption in the presence of magnetic fieldâ€, Adv. Appl. Sci. Res.

vol. 6, no. 3, pp. 20-34, 2015.

P. Vimala and P.B. Omega, “Solution of micropolar fluid flow through porous channels a differential transform approachâ€, Appl. Math. Sci., vol. 9, no. 66, pp. 3291–3302, 2015.

M. Shafique, “Numerical solution of MHD viscous flow of micropolar fluid over a shrinking sheet using SOR iterative procedureâ€, Intl. J. Innov. Sci. Res., vol. 14, no. 2, pp. 259-267, 2015.

B.H. Veena, “Effect of velocity slip and permeability on micropolar squeezing flowâ€, Int. J. Comp. Math. Sci., vol. 3, no. 4, pp. 41-50, 2014.

A.C. Eringen, “Theory of thermomicropolar fluidsâ€, J. Math. Anal. Appl., vol. 38, pp. 480-496, 1972.

F. Ahmad, S. Hussain and A. Ansari, “Unsteady MHD blood flow with micropolar fluid characteristics and heat source through parallel plate channelâ€, J. Appl. Environ. Biol. Sci., vol. 5, no.4. pp. 80-86, 2015.

S. Khilap and K. Manoj, “Effect of thermal radiation on melting heat transfer in stagnation point flow of MHD micropolar fluid towards a stretching surfaceâ€, Int. J. Adv. Eng. Res. Tech., vol. 15, pp. 22-28, 2014.

H. Waqas, S. Hussain, A. Saboor and S. Khalid, “Micropolar fluids flow over a shrinking porous surface in the presence of magnetic field and thermal radiationâ€, Sci. Int. (Lahore), vol. 28, no.1, pp. 53-57, 2016.

H. Waqas, M.A. Kamal, A Farooq, S. Khalid and S. Hussain, “The radiation effect on MHD stagnation point flow of micropolar fluids due to a porous shrinking sheet with heat generationâ€, Sci. Int. (Lahore),

vol. 28, no.5, pp. 4271-4275, 2016.

S. Khalid, S. Hussain and H. Waqas. “Numerical solution of MHD flow and heat transfer in porous medium over a porous shrinking surface with radiation and viscous dissipationâ€, Sci. Int. (Lahore), vol. 28, no.4,

pp. 4297- 4302, 2016.

G.M. Abdel-Rahman, “Effect of magnetohydrodynamic on thin film of unsteady micropolar fluid through a porous mediumâ€, J. Mod. Phys., vol. 2, pp. 1290-1304, 2011.

S. Asghar, M.R. Mohyuddin and T. Hayat, “Effects of Hall current and heat transfer on flow due to a pull of eccentric rotating disksâ€, Int. J. Heat Mass Transfer, vol. 48, pp. 599-607, 2005.

M.R. Mohyuddin and T. Goetz, “Resonance behavior of viscoelastic fluid in Poiseuille flow in the presence of a transversal magnetic fieldâ€, Int. J. Num. Meth. Fluids, vol. 49, no. 8, pp. 837–847, 2005.

S. Jena, “Numerical solution of boundary layer MHD flow with viscous dissipationâ€, The Experiment, vol. 18, no.2, pp. 1235-1244, 2014.

Y. Ren, “Fundamentals of Computational Fluid Dynamics (in Chinese)â€, Beijing Qsinghua University Press, 2006.

E.O. Fatunmbi and A. Adeniyan, “MHD stagnation point-flow of micropolar fluids past a permeable stretching plate in porous media with thermal radiation, chemical reaction and viscous dissipationâ€, J. Adv. Math. Comp. Sci., vol. 26, no. 1, pp. 11-19, 2018.

K. Kanagarajan and S. Indrakumar, “Numerical solution of Nth-order fuzzy differential equation by Runge-Kutta method of order fiveâ€, Int. J. Math. Anal., vol. 6, pp. 2885-2896, 2012.

B. Mohanty, S.R. Mishra and H.B. Pattanayak, “Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching sheet through porous mediaâ€, Alexandria Engg. J., vol. 54, pp. 223–232, 2015.

Downloads

Published

17-02-2021

How to Cite

[1]
H. Waqas, S. Hussain, and S. Khalid, “MHD Boundary Layer Flow of Micropolar Fluids due to Porous Shrinking Surface with Viscous dissipation and Radiation”, The Nucleus, vol. 57, no. 3, pp. 76–80, Feb. 2021.

Issue

Section

Articles