Highly Efficient Multimedia Image Retrieval using Slim Descriptor

K. T. Ahmed, H. Afzal, S. Iqbal, M. G. Hussain, M. R. Mufti, A. Karim


Efficient multimedia image extraction with high precision compatible with diverse image datasets is an implicit requirement of current image retrieval systems. In this paper, a multimedia image descriptor is introduced to achieve high performance along with high accuracy. For this, Histograms of Oriented Gradients (HOG) are extracted from a dense grid partitioned image by taking edge intensity based orientation histograms as primitive feature vectors. We depleted these massive redundant candidates to linearly uncorrelated variables by applying orthogonal transformation to achieve Principal Components (PC) where succeeding component’s constraint dependent orthogonal variance based local descriptors are compact and robust to deformation. A distinctness of our proposed approach is the selection of a single coefficient having largest variance as image descriptor out of returned dimensionally reduced vectors which results in higher performance and less space and time consumption. Supervised learning using Support Vector Machine (SVM) is then applied on non-probabilistic binary linear classification of images. The experimental results show higher precision, low memory consumption and sufficient performance gain.

Full Text:



M.J. Swain and D.H. Ballard, “Color indexing”, Int. J. Comput. Vis., vol. 7, no. 1, pp. 11-32, 1991.

J. Huang, S.R. Kumar, M. Mitra, W.J. Zhu and R. Zabih, “Spatial color indexing and applications”, Int. J. Comput. Vis., vol. 35, no. 3, pp. 245-268, 1999.

J. Han and K.K. Ma, “Fuzzy color histogram and its use in color image retrieval”, IEEE Trans. on image Process., vol. 11, no. 8, pp.944-952, 2002.

K.T. Ahmed and M.A. Iqbal, “Region and texture based effective image extraction”, Cluster Comput., vol. 21, no. 1, pp. 493-502, 2018.

K.T. Ahmed, A. Irtaza and M.A. Iqbal, “Fusion of local and global features for effective image extraction”, Appl. Intell., vol. 47, no. 2, pp. 526-543, 2017.

T. Gevers and A.W. Smeulders, “Pictoseek: Combining color and shape invariant features for image retrieval”, IEEE Trans. on image

Process., vol. 9, no. 1, pp. 102-119, 2000.

J. Shi and J. Malik, “Normalized cuts and image segmentation”, IEEE Trans. on Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, 2000.

D.G. Lowe, “Object Recognition from Local Scale-Invariant Features”, IEEE Int. Conf. Comput. Vis., vol. 2, pp. 1150-1157, 1999.

H. Bay, T. Tuytelaars and L. Van Gool, “Surf: Speeded up robust

features”, Eur. Conf. Comput. Vis., pp. 404-417, Springer, Berlin,

Heidelberg, 2006.

K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors”, IEEE Trans. on Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1615-1630, 2005.

N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection”, IEEE Comput. Society Conf. Comput. Vis. Pattern Recog., vol. 1, pp. 886-893, 2005.

K.S. Goh, E. Chang and K.T. Cheng, “Support vector machine pairwise classifiers with error reduction for image classification”, Proc. of the 2001 ACM workshops on Multimed.: multimed. Inf. Retr., pp. 32-37, 2001.

C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Color- and texture-based image segmentation using EM and its application to

content-based image retrieval”, 6th Int. Conf. Comput. Vis., pp. 675-682, 1998.

F. Jing, B. Zhang, F. Lin, W.Y. Ma and H.J. Zhang, “A novel regionbased image retrieval method using relevance feedback”, Proc. of the 2001 ACM workshops on Multimed.: Multimed. Inf. Retr., pp. 28-31,

M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T.S. Huang, “Supporting ranked boolean similarity queries in MARS”, IEEE Trans. Knowl. Data Eng., vol. 10, no. 6, pp. 905-925, 2002.

G. Zhao, L. Chen, G. Chen and J. Yuan, “KPB-SIFT: a compact local feature descriptor”, Proc. of the 18th ACM Int. Conf. on Multimed.,

pp. 1175-1178, 2010.

Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for local image descriptors”, IEEE Comput. Society Conf. on Comput. Vis. Pattern Recognit., vol. 2, pp. 1063-6919, 2004.

W.L. Lu and J.J. Little, “Simultaneous tracking and action recognition using the pca-hog descriptor”, Proc. of 3rd IEEE Can. Conf. on Comput. Robot Vis. (CRV'06), pp. 6-6, 2006.

T. Kobayashi, A. Hidaka and T. Kurita, “Selection of histograms of oriented gradients features for pedestrian detection”, Int. Conf. on neural Inf. Process., pp. 598-607, 2007.

K. Onishi, T. Takiguchi and Y. Ariki, “3D human posture estimation using the HOG features from monocular image”, 19th IEEE Int. Conf. on Pattern Recognit., pp.1-4, 2008.

C.C. Chen and J.K. Aggarwal, "Recognizing human action from a far field of view”, IEEE Workshop on Motion and Video Comput.,

WMVC'09, pp. 1-7, 2009.

Q.J. Wang and R.B. Zhang, “LPP-HOG: A new local image descriptor for fast human detection”, Proc. of IEEE Int. Sym. on Knowl. Acquis. Model. Workshop, pp. 640-643, 2008.

H. Yang, Z. Song and R. Chen, “An incremental PCA-HOG descriptor for robust visual hand tracking”, Int. Symp. on Vis. Comput., pp. 687-695, 2010.

M.M. Asha and J.J. Ranjani. "Secure image retrieval using pyramid histogram of oriented gradient descriptor", Proc. of IEEE Int. Conf. Adv. Comput. Comm. Syst. (ICACCS2013), pp. 1-5, 2013.

R.W. Sun,T. Rui, J.L. Zhang and Y. Zhou, “Pedestrian detection by PCA-based mixed HOG-LBP features”, Proc. of the 4th Int. Conf. on Internet Multimed. Comput. Serv., pp. 92-95, 2012.

S. Chen and C. Liu, "Precise eye detection using discriminating hog features.", Proc. of Comput. Anal. Images Patterns, pp. 443-450, 2011.

K. Mihreteab, M. Iwahashi and M. Yamamoto, "Crow birds detection using HOG and CS-LBP.", Int. Symp. on Inteligent Signal Process.

Comm. Syst. (ISPACS), pp. 406-409, 2012.

A.A. Fathima,V. Vaidehi, N. Rastogi, R.M. Kumar and S.

Sivasubramaniam, “Performance analysis of multiclass object detection using SVM classifier”, Proc. of IEEE Int. Conf. on Recent Trends in

Inf. Technol. (ICRTIT), pp. 157-162, 2013.

K.V. Suresh, "HOG-PCA descriptor with optical flow based human detection and tracking.", Proc. of IEEE Int. Conf. on Comm. and Signal Process. (ICCSP 2014), pp. 900-904, 2014.

J. Meng and S. Li, “Pedestrian detection based on the improved HOG features”, Proc. of 2nd Int. Workshop on Mater. Eng. Comput. Sciences. Atlantis Press, (IWMECS, 2015), vol. 1, pp. 701-704, 2015.

S. Wold, K. Esbensen and P. Geladi, "Principal component analysis", Chemometr. intell. Lab. syst., vol. 2, no. 1-3, pp. 37-52, 1987.

T. Joachims, "Transductive inference for text classification using support vector machines", ICML, vol. 99, pp. 200-209. 1999.

J. Meng and Y. Yang, “Symmetrical Two-Dimensional PCA with

Image Measures in Face Recognition”, Int. J. Adv. Robotic Syst., vol. 9, pp. 1-10, 2012.

P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K.

Hoffman, J. Marques, J. Min and W. Worek, “Overview of the Face

Recognition Grand Challenge”, Proc. of IEEE Comput. Society Conf.

on Comput. Vis. pattern recognit. (CVPR 2005), pp. 947-954, 2005.

W.J. Krzanowski "Selection of variables to preserve multivariate data structure, using principal components," Appl. Stat., pp. 22-33, 1987.

J. Li and J.Z. Wang, "Automatic linguistic indexing of pictures by astatistical modeling approach", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1075-1088, 2003.

J.Z. Wang, J. Li and G. Wiederhold, "SIMPLIcity: Semantics-sensitive Integrated Matching for Picture LIbraries", IEEE Trans. on Pattern

Anal. Mach. Intell., vol. 23, no.9, pp. 947-963, 2001.

P.S. Hiremath and J. Pujari, "Content based image retrieval using color, texture and shape features.", Proc. of IEEE Int. Conf. on Adv. Comput. Comm. (ADCOM 2007), pp. 780-784, 2007.

F. Jing, M. Li, H.J. Zhang and B. Zhang, "Support vector machines for region-based image retrieval.", Proc. of IEEE Int. Conf. on Multimedia and Expo, (ICME'03), vol. 2, pp. 11-21, 2003.

S. Chatzichristofis and Y. Boutalis, "A hybrid scheme for fast and accurate image retrieval based on color descriptors", Proc. of Int. Conf. on artif. intell. soft comput. (ASC 2007), pp. 280-285, 2007.

Y. Zhu, W. Mio and X. Liu, "Optimal factor analysis and applications to content-based image retrieval", Proc. Int. Conf. Comput. Vis.

Comput. Graph., pp. 164-176, 2008.

R.E.G. Valenzuela, W.R. Schwartz and H. Pedrini, “Dimensionality

reduction through PCA over SIFT and SURF descriptors”, Proc. IEEE

th Int. Conf. Cybernetic Intell. Syst. (CIS 2012), pp. 58-63, 2012.

I. Jolliffe, "Principal component analysis", Int. encyclopedia stat. sci., pp. 1094-1096, 2011.

P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K.

Hoffman, J. Marques, J. Min and W. Worek, “Overview of the Face

Recognition Grand Challenge”, Proc. of IEEE Comput. Society Conf.

Comput. Vis. pattern recognit., vol. 1, pp. 947-954, 2005.

P. Nomikos and J.F. MacGregor, "Monitoring batch processes using multiway principal component analysis", AIChE J., vol. 40, no. 8, pp. 1361-1375, 1994.

J. Porter, A. Guirao, I.G. Cox and D.R. Williams, “Monochromatic aberrations of the human eye in a large population”, JOSA A., vol. 18, no. 8, pp. 1793-1803, 2001.

K.J. Friston, C.D. Frith, P.F. Liddle, and R.S.J. Frackowiak. "Functional connectivity: the principal-component analysis of large (PET) data

sets", J. Cereb. Blood Flow Metab., vol. 13, no. 1, pp. 5-14, 1993.

T.A. Houweling, A.E. Kunst and J.P. Mackenbach, “Measuring health inequality among children in developing countries: does the choice of the indicator of economic status matter?”, Int. J. Equity Health, vol. 2, no. 1, pp. 1-12, 2003.

M.E. Wall, A. Rechtsteiner and L.M. Rocha, "Singular value

decomposition and principal component analysis", Proc. Prac. approach to microarray data anal., pp. 91-109, 2003.

M. Hubert, P.J. Rousseeuw and K. Vanden Branden, “ROBPCA: a new approach to robust principal component analysis”, Technometrics, vol. 47, no. 1, pp. 64-79, 2005.

B.D. Van Veen, "Eigenstructure based partially adaptive array design", IEEE Trans. Antennas Propag., vol. 36, no. 3, pp. 357-362, 1988.

B. Schölkopf, A. Smola and K.R. Müller, “Kernel principal component analysis”, Proc. Int. Conf. artif. neural Netw., pp. 583-588, 1997.


  • There are currently no refbacks.