# Highly Efficient Multimedia Image Retrieval using Slim Descriptor

## Abstract

Efficient multimedia image extraction with high precision compatible with diverse image datasets is an implicit requirement of current image retrieval systems. In this paper, a multimedia image descriptor is introduced to achieve high performance along with high accuracy. For this, Histograms of Oriented Gradients (HOG) are extracted from a dense grid partitioned image by taking edge intensity based orientation histograms as primitive feature vectors. We depleted these massive redundant candidates to linearly uncorrelated variables by applying orthogonal transformation to achieve Principal Components (PC) where succeeding componentâ€™s constraint dependent orthogonal variance based local descriptors are compact and robust to deformation. A distinctness of our proposed approach is the selection of a single coefficient having largest variance as image descriptor out of returned dimensionally reduced vectors which results in higher performance and less space and time consumption. Supervised learning using Support Vector Machine (SVM) is then applied on non-probabilistic binary linear classification of images. The experimental results show higher precision, low memory consumption and sufficient performance gain.

## References

M.J. Swain and D.H. Ballard, â€œColor indexingâ€, Int. J. Comput. Vis., vol. 7, no. 1, pp. 11-32, 1991.

J. Huang, S.R. Kumar, M. Mitra, W.J. Zhu and R. Zabih, â€œSpatial color indexing and applicationsâ€, Int. J. Comput. Vis., vol. 35, no. 3, pp. 245-268, 1999.

J. Han and K.K. Ma, â€œFuzzy color histogram and its use in color image retrievalâ€, IEEE Trans. on image Process., vol. 11, no. 8, pp.944-952, 2002.

K.T. Ahmed and M.A. Iqbal, â€œRegion and texture based effective image extractionâ€, Cluster Comput., vol. 21, no. 1, pp. 493-502, 2018.

K.T. Ahmed, A. Irtaza and M.A. Iqbal, â€œFusion of local and global features for effective image extractionâ€, Appl. Intell., vol. 47, no. 2, pp. 526-543, 2017.

T. Gevers and A.W. Smeulders, â€œPictoseek: Combining color and shape invariant features for image retrievalâ€, IEEE Trans. on image

Process., vol. 9, no. 1, pp. 102-119, 2000.

J. Shi and J. Malik, â€œNormalized cuts and image segmentationâ€, IEEE Trans. on Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, 2000.

D.G. Lowe, â€œObject Recognition from Local Scale-Invariant Featuresâ€, IEEE Int. Conf. Comput. Vis., vol. 2, pp. 1150-1157, 1999.

H. Bay, T. Tuytelaars and L. Van Gool, â€œSurf: Speeded up robust

featuresâ€, Eur. Conf. Comput. Vis., pp. 404-417, Springer, Berlin,

Heidelberg, 2006.

K. Mikolajczyk and C. Schmid, â€œA performance evaluation of local descriptorsâ€, IEEE Trans. on Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1615-1630, 2005.

N. Dalal, and B. Triggs, â€œHistograms of oriented gradients for human detectionâ€, IEEE Comput. Society Conf. Comput. Vis. Pattern Recog., vol. 1, pp. 886-893, 2005.

K.S. Goh, E. Chang and K.T. Cheng, â€œSupport vector machine pairwise classifiers with error reduction for image classificationâ€, Proc. of the 2001 ACM workshops on Multimed.: multimed. Inf. Retr., pp. 32-37, 2001.

C. Carson, S. Belongie, H. Greenspan, and J. Malik, â€œColor- and texture-based image segmentation using EM and its application to

content-based image retrievalâ€, 6th Int. Conf. Comput. Vis., pp. 675-682, 1998.

F. Jing, B. Zhang, F. Lin, W.Y. Ma and H.J. Zhang, â€œA novel regionbased image retrieval method using relevance feedbackâ€, Proc. of the 2001 ACM workshops on Multimed.: Multimed. Inf. Retr., pp. 28-31,

M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T.S. Huang, â€œSupporting ranked boolean similarity queries in MARSâ€, IEEE Trans. Knowl. Data Eng., vol. 10, no. 6, pp. 905-925, 2002.

G. Zhao, L. Chen, G. Chen and J. Yuan, â€œKPB-SIFT: a compact local feature descriptorâ€, Proc. of the 18th ACM Int. Conf. on Multimed.,

pp. 1175-1178, 2010.

Y. Ke and R. Sukthankar, â€œPCA-SIFT: a more distinctive representation for local image descriptorsâ€, IEEE Comput. Society Conf. on Comput. Vis. Pattern Recognit., vol. 2, pp. 1063-6919, 2004.

W.L. Lu and J.J. Little, â€œSimultaneous tracking and action recognition using the pca-hog descriptorâ€, Proc. of 3rd IEEE Can. Conf. on Comput. Robot Vis. (CRV'06), pp. 6-6, 2006.

T. Kobayashi, A. Hidaka and T. Kurita, â€œSelection of histograms of oriented gradients features for pedestrian detectionâ€, Int. Conf. on neural Inf. Process., pp. 598-607, 2007.

K. Onishi, T. Takiguchi and Y. Ariki, â€œ3D human posture estimation using the HOG features from monocular imageâ€, 19th IEEE Int. Conf. on Pattern Recognit., pp.1-4, 2008.

C.C. Chen and J.K. Aggarwal, "Recognizing human action from a far field of viewâ€, IEEE Workshop on Motion and Video Comput.,

WMVC'09, pp. 1-7, 2009.

Q.J. Wang and R.B. Zhang, â€œLPP-HOG: A new local image descriptor for fast human detectionâ€, Proc. of IEEE Int. Sym. on Knowl. Acquis. Model. Workshop, pp. 640-643, 2008.

H. Yang, Z. Song and R. Chen, â€œAn incremental PCA-HOG descriptor for robust visual hand trackingâ€, Int. Symp. on Vis. Comput., pp. 687-695, 2010.

M.M. Asha and J.J. Ranjani. "Secure image retrieval using pyramid histogram of oriented gradient descriptor", Proc. of IEEE Int. Conf. Adv. Comput. Comm. Syst. (ICACCS2013), pp. 1-5, 2013.

R.W. Sun,T. Rui, J.L. Zhang and Y. Zhou, â€œPedestrian detection by PCA-based mixed HOG-LBP featuresâ€, Proc. of the 4th Int. Conf. on Internet Multimed. Comput. Serv., pp. 92-95, 2012.

S. Chen and C. Liu, "Precise eye detection using discriminating hog features.", Proc. of Comput. Anal. Images Patterns, pp. 443-450, 2011.

K. Mihreteab, M. Iwahashi and M. Yamamoto, "Crow birds detection using HOG and CS-LBP.", Int. Symp. on Inteligent Signal Process.

Comm. Syst. (ISPACS), pp. 406-409, 2012.

A.A. Fathima,V. Vaidehi, N. Rastogi, R.M. Kumar and S.

Sivasubramaniam, â€œPerformance analysis of multiclass object detection using SVM classifierâ€, Proc. of IEEE Int. Conf. on Recent Trends in

Inf. Technol. (ICRTIT), pp. 157-162, 2013.

K.V. Suresh, "HOG-PCA descriptor with optical flow based human detection and tracking.", Proc. of IEEE Int. Conf. on Comm. and Signal Process. (ICCSP 2014), pp. 900-904, 2014.

J. Meng and S. Li, â€œPedestrian detection based on the improved HOG featuresâ€, Proc. of 2nd Int. Workshop on Mater. Eng. Comput. Sciences. Atlantis Press, (IWMECS, 2015), vol. 1, pp. 701-704, 2015.

S. Wold, K. Esbensen and P. Geladi, "Principal component analysis", Chemometr. intell. Lab. syst., vol. 2, no. 1-3, pp. 37-52, 1987.

T. Joachims, "Transductive inference for text classification using support vector machines", ICML, vol. 99, pp. 200-209. 1999.

J. Meng and Y. Yang, â€œSymmetrical Two-Dimensional PCA with

Image Measures in Face Recognitionâ€, Int. J. Adv. Robotic Syst., vol. 9, pp. 1-10, 2012.

P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K.

Hoffman, J. Marques, J. Min and W. Worek, â€œOverview of the Face

Recognition Grand Challengeâ€, Proc. of IEEE Comput. Society Conf.

on Comput. Vis. pattern recognit. (CVPR 2005), pp. 947-954, 2005.

W.J. Krzanowski "Selection of variables to preserve multivariate data structure, using principal components," Appl. Stat., pp. 22-33, 1987.

J. Li and J.Z. Wang, "Automatic linguistic indexing of pictures by astatistical modeling approach", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1075-1088, 2003.

J.Z. Wang, J. Li and G. Wiederhold, "SIMPLIcity: Semantics-sensitive Integrated Matching for Picture LIbraries", IEEE Trans. on Pattern

Anal. Mach. Intell., vol. 23, no.9, pp. 947-963, 2001.

P.S. Hiremath and J. Pujari, "Content based image retrieval using color, texture and shape features.", Proc. of IEEE Int. Conf. on Adv. Comput. Comm. (ADCOM 2007), pp. 780-784, 2007.

F. Jing, M. Li, H.J. Zhang and B. Zhang, "Support vector machines for region-based image retrieval.", Proc. of IEEE Int. Conf. on Multimedia and Expo, (ICME'03), vol. 2, pp. 11-21, 2003.

S. Chatzichristofis and Y. Boutalis, "A hybrid scheme for fast and accurate image retrieval based on color descriptors", Proc. of Int. Conf. on artif. intell. soft comput. (ASC 2007), pp. 280-285, 2007.

Y. Zhu, W. Mio and X. Liu, "Optimal factor analysis and applications to content-based image retrieval", Proc. Int. Conf. Comput. Vis.

Comput. Graph., pp. 164-176, 2008.

R.E.G. Valenzuela, W.R. Schwartz and H. Pedrini, â€œDimensionality

reduction through PCA over SIFT and SURF descriptorsâ€, Proc. IEEE

th Int. Conf. Cybernetic Intell. Syst. (CIS 2012), pp. 58-63, 2012.

I. Jolliffe, "Principal component analysis", Int. encyclopedia stat. sci., pp. 1094-1096, 2011.

P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K.

Hoffman, J. Marques, J. Min and W. Worek, â€œOverview of the Face

Recognition Grand Challengeâ€, Proc. of IEEE Comput. Society Conf.

Comput. Vis. pattern recognit., vol. 1, pp. 947-954, 2005.

P. Nomikos and J.F. MacGregor, "Monitoring batch processes using multiway principal component analysis", AIChE J., vol. 40, no. 8, pp. 1361-1375, 1994.

J. Porter, A. Guirao, I.G. Cox and D.R. Williams, â€œMonochromatic aberrations of the human eye in a large populationâ€, JOSA A., vol. 18, no. 8, pp. 1793-1803, 2001.

K.J. Friston, C.D. Frith, P.F. Liddle, and R.S.J. Frackowiak. "Functional connectivity: the principal-component analysis of large (PET) data

sets", J. Cereb. Blood Flow Metab., vol. 13, no. 1, pp. 5-14, 1993.

T.A. Houweling, A.E. Kunst and J.P. Mackenbach, â€œMeasuring health inequality among children in developing countries: does the choice of the indicator of economic status matter?â€, Int. J. Equity Health, vol. 2, no. 1, pp. 1-12, 2003.

M.E. Wall, A. Rechtsteiner and L.M. Rocha, "Singular value

decomposition and principal component analysis", Proc. Prac. approach to microarray data anal., pp. 91-109, 2003.

M. Hubert, P.J. Rousseeuw and K. Vanden Branden, â€œROBPCA: a new approach to robust principal component analysisâ€, Technometrics, vol. 47, no. 1, pp. 64-79, 2005.

B.D. Van Veen, "Eigenstructure based partially adaptive array design", IEEE Trans. Antennas Propag., vol. 36, no. 3, pp. 357-362, 1988.

B. SchÃ¶lkopf, A. Smola and K.R. MÃ¼ller, â€œKernel principal component analysisâ€, Proc. Int. Conf. artif. neural Netw., pp. 583-588, 1997.

## Downloads

## Published

## How to Cite

*The Nucleus*, vol. 57, no. 4, pp. 118–128, Jun. 2021.