### Simulation Modeling of Multi-Junction Solar Cell for Efficiency Improvement

#### Abstract

Current trends in the design of Multi-Junction Solar Cells (MJSC) and quantum dot applications form

the backbone of the Concentrated Solar Photovoltaic (CSPs) Systems. There are a number of

developments in solar power technology because of their improved power production, high efficiency,

high absorption coefficients and cost-effectiveness. Selection of solar photovoltaic (PV) materials of

different band gap energies to absorb complete solar spectrum is close to a reality with decrease in price

to performance ratio. This paper presents a generalized MJSC simulation model. The present model

assumes a mathematical approach, investigating solar cell characteristic curves including current

density (Jsc) and power (P) curves concerning the applied voltage for a different number of junctions and

by varying the material properties of the multi-junction (MJ). The proposed model simulates different

parameters and performance characteristics of two different natures of MJSC including

InGaN/AlGaAs/InGaAs Triple Junction Solar Cell (TJSC) and InGaN/InGaN/AlInP/AlInP/AlGaAs/

AlGaAs/AlGaAs Seven-Junction Solar Cell. Simulation results presented in this paper are in agreement

with experimental results. Solar cell parameters including short circuit current (Jsc), open circuit voltage

(Voc), leakage current (Jo), output power (Pout) have also been calculated in this work. The efficiency

(%đ) of a TJSC for visible light, ultraviolet (UV), visible and infrared (IR) light is presented. The

efficiency (%đ) of seven junction solar cell is calculated to be 63%. Characteristic curves of the solar

cell are plotted as a function of voltage for different concentration levels and the number of junctions,

which helps to design a solar power array that can operate to its peak power point. The objective of this

research is to improve the overall efficiency of MJSC.

#### Full Text:

PDF#### References

T. Katsuaki, âA review of ultrahigh efficiency iii-v semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structuresâ, Energies, vol. 2, pp. 504-530, 2009.

M. Ali, âSolar absorption air-conditioning systemsâ, ASHRAE/ PHVACR Expo and Conference Pakistan, 2011. [Online]. Available: https://www.semanticscholar.org/paper/Solar-Absorption-Air-Cond-itioning-Systems-Ali. [Accessed Nov. 11, 2018].

F. Dimroth and S. Kurtz, âHigh-efficiency multijunction solar cellsâ, MRS bulletin, vol. 32, no. 3, pp. 230-235, 2007.

B. Burnett, âThe basic physics and design of III-V multijunction solar cellsâ, J. Electromagn. Anal. Appl., vol. 6, no. 13, November 2014.

M.A. Green, âPhotovoltaic principlesâ, Phys. E (Amsterdam, Neth.), vol. 14, no. 1, pp. 11-17, April 2002.

M. Yamaguchi, T. Takamoto, K. Araki and N. Ekins-Daukes, âMulti-junction IIIâV solar cells: current status and future potentialâ, Sol. Energy, vol. 79, pp. 78-85, 2005.

M. Yamaguchi, T. Takamoto, A. Khan, M. Imaizumi, S. Matsuda and N. EkinsâDaukes, âSuperâhighâefficiency multiâjunction solar cellsâ, Prog. Photovoltaics, vol. 13, no. 2, pp. 125-132, 2005.

A. MartĂ and A. Luque, âNext generation photovoltaics: High efficiency through full spectrum utilizationâ, CRC Press, 2003.

R.R. King, N.H. Karam, J.H. Ermer, N. Haddad, P. Colter, T. Isshiki, H. Yoon, H.L. Cotal, D.E. Joslin, D.D. Krut and R. Sudharsanan,

âNext-generation, high-efficiency III-V multijunction solar cellsâ, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conf.-2000, Anchorage, AK, USA, September 15-22, 2000, pp. 998-1001.

M. GonzĂĄlez, N. Chan, N. Ekins-Daukes, J.G. Adams, P. Stavrinou, I. Vurgaftman, J.R. Meyer, J. Abell, R.J. Walters, C.D. Cress and P.P. Jenkins, âModeling and analysis of multijunction solar cellsâ, Phys. and Simulation of Opt. Devices XIX, SPIE OPTO 2011, San Francisco, California, USA, February 21, 2011, International Society for Optics and Photonics, 2011, pp. 79330R.

W. Guter, and A.W. Bett, "IV-characterization of devices consisting of solar cells and tunnel diodes", IEEE 4th World Conf. on PV Energy Conf., 7-12 May 2006, Waikoloa, HI, USA, vol. 1, pp. 749-752.

R. Sven, "Tabulated values of the ShockleyâQueisser limit for single junction solar cells", Sol. Energy, vol. 130, pp. 139-147, 2016.

A. Blakers, N. Zin, K.R. McIntosh and F. Fong, âHigh efficiency silicon solar cellsâ, Energy Procedia, vol. 33, pp. 1-10, 2013.

M.A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 37)", Prog. Photovoltaics, vol. 19 pp. 84-92, 2010.

M.J. Keevers, C.F.J. Lau, M.A. Green, I. Thomas, J.B. Lasich, R.K. Richard and A. Keith, âHigh efficiency spectrum splitting prototype sub-module using commercial CPV cellsâ, 6th World Conf. on Photovoltaic Energy Conversion, WCPEC-6, Kyoto, Japan, Nov. 23-27, 2014.

G.K. Dey and T.A. Kazi, "Multi-junction solar cells and microwave power transmission technologies for solar power satellite", IEEE Int. Conf. on Inform., Electronics & Vision, ICIEV, Dhaka, Bangladesh (May 23-24, 2014), vol. 1, pp. 1-6, 2014.

F. Dimroth, G. Matthias, P. Beutel, U. Fiedeler, C. Karcher, T. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, T. Signamarcheix, T. Hannappel, K. Schwarzburg, "Wafer bonded fourâjunction GaInP/ GaAs/ GaInAsP/ GaInAs concentrator solar cells with 44.7% efficiency", Prog. Photovoltaics, vol. 3, pp. 277-282, 2014.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon and N. Karam, "IIIâV multijunction solar cells for concentrating photovoltaics", Energy Environ. Sci., vol. 2, pp. 174-192, 2009.

W. Guter, J. SchĂ¶ne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett and F. Dimroth, "Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight", Appl. Phys. Lett. 94, vol. 22, pp. 1-12, 2009.

M.A. Green, "Third generation photovoltaics: advanced solar energy conversion", Phys. Today, vol. 57, no. 12, pp. 71-72, 2004.

R.R. King, "Raising the efficiency ceiling in multijunction solar cells", Energy Efficient Mater., vol. 1, pp. 1-76, 2011.

M.A. Green, "Solar cell efficiency tables (version 54)", Prog. Photovoltaics, vol. 27, pp. 565-575, 2019.

J.A. Gow and C.D. Manning, "Development of a photovoltaic array model for use in power-electronics simulation studies", IEEE Proc. of Electric Power Appl., vol. 146, no. 2, pp. 193-200, 1999.

O. Wasynezuk, "Dynamic behavior of a class of photovoltaic power systems", IEEE Trans. Power Appar. Syst., vol. 9, pp. 3031-3037, 1983.

J.C.H. Phang, D.S.H. Chan and J.R. Phillips, "Accurate analytical method for the extraction of solar cell model parameters", Electron. Lett., vol. 20, no. 10, pp. 406-408, 1984.

H.L. Tsai, C. Tu and Y. Su, "Development of generalized photovoltaic model using Matlab/Simulink", Proc. of the WCECS, San Francisco, USA, (October 22 â 24), vol. 1, pp. 1-6, 2008.

E.C. Warmann, M.S. Leite and H.A. Atwater, "Photovoltaic efficiencies in lattice-matched III-V multijunction solar cells with unconventional lattice parameters," 37th IEEE Photovoltaic Spec. Conf., Seattle, WA, USA (June 19-24), vol. 1, pp. 1-5, 2011.

P. Singh, and N. Ravindra, "Temperature dependence of solar cell performance - an analysis", Sol. Energy Mater. Sol. Cells, vol. 101, pp. 36-45, 2011.

M.A. Ali and S. Akram / The Nucleus 56, No. 3 (2019) 112-122

I. Vurgaftman, J. Meyer and L. Ram-Mohan, "Band parameters for IIIâV compound semiconductors and their alloys", J. Appl. Phys., vol. 89, no. 11 pp. 5815-5875, 2001.

A. Shukla, M. Khare and K.N. Shukla, "Modeling and simulation of solar PV module on Matlab/Simulink", Int. J. Innovative Res. Sci., Eng., Technol., vol. 4, no. 1, pp. 18516- 18527, 2015.

P. Bhattacharya, R. Fornari and H. Kamimura, âComprehensive Semiconductor Science and Technologyâ, vol. 1, Elsevier Newnes; 2011.

M.A. Ali, G. Subhani and S. Akram, âEconomic viability of solar absorption cooling system in Pakistanâ, Int. J. Adv. Study Res. Work, vol. 1, pp. 7-14, 2018.

E. F. FernĂĄndez, A. J. GarcĂa-Loureiro and G. P. Smestad, "Multijunction concentrator solar cells: analysis and fundamentals", in High Concentrator Photovoltaics, pp. 9-37. Springer, Cham, 2015, pp. 9-37.

S. Lansel, "Technology and future of III-V multi-junction solar cell", Int. J. Appl. Phys., vol. 6, no. 3, pp. 3-8, 2010.

E. OlĂas, A. Barrado and A. LĂĄzaro, âReview of the maximum power point tracking algorithms for stand-alone photovoltaic systemsâ, Sol. Energy Mater. Sol. Cells, vol. 90, no. 11, pp. 1555-1578, 2006.

B. Subudhi and R. Pradhan, "A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systemsâ, IEEE Trans. on Sustainable Energy, vol. 4, no. 1, pp. 89-98, 2013.

L. Castaner and S. Silvestre, Modelling photovoltaic systems using PSpice, John Wiley and Sons, 2002.

B.S. Richards and K.R. McIntosh, âOvercoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence downâshifting: rayâtracing simulationsâ, Prog. Photovoltaics, vol. 15, no. 1, pp. 27-34, 2007.

T. Easwarakhanthan, J. Bottin, I. Bouhouch and C. Boutrit, âNonlinear minimization algorithm for determining the solar cell parameters with microcomputersâ, Int. J. Sol. Energy, vol. 4, no. 1, pp. 1-12, 2015.

K. A. Emery and C. R. Osterwald, âSolar cell efficiency measurementsâ, Sol. Cells, vol. 17, no. 2, pp. 253-274, 1986.

C. Maurya, A. K. Gupta, P. Srivastava, L. Bahadur, âCallindra haematocephata and Peltophorum pterocarpum flowers as natural sensitizers for TiO2 thin film based dye-sensitized solar cellsâ, Opt. Mater., vol. 60, pp. 270-6, 2016.

### Refbacks

- There are currently no refbacks.