# DFT Studies of Indium Nanoclusters, Nanotubes and their Interaction with Molecular Hydrogen

## Abstract

Density functional theory calculations have been performed on Indium nanoclusters (Inn, n= 3 to 10) to explore the relative stability among their different isomers and interaction with H2. Geometry optimizations starting from initial candidate geometries were performed for each cluster size, so as to determine a few low energy isomers for each size. Clusters with planar configuration and high symmetry are found to be more stable. For n=8, there comes transition from 2D to 3D structures. Energetically favorable isomers of indium nanoclusters for each size were considered to get H2 adsorbed. In general H2 interaction with these clusters is weak but with those comprising of some odd number of atoms i.e. 5, 7 and 9 is considerable. Indium nanotube also indicates H2 adsorption but Eads increases many folds on introduction of defect in the tube. On the basis of DFT investigations, it is suggested that apparently indium nanoclusters and tubes of specific size seem better candidates for materials to store hydrogen.## References

References

J.A. Alonso, â€œStructure and Properties of Atomic Nanoclustersâ€,

nd Ed., Singapore, World Scientific, 2011.

J.D. Aiken III and R.G. Finke, â€œA review of modern transition

metal nanoclusters: Their synthesis, characterization, and

applications in catalysisâ€, J. Mol. Catal. A: Chem., vol. 145, no. 1,

pp. 1-44, 1999.

G. Schmid, M. BÃ¤umle, M. Geerkens, I. Heim, C. Osemann and

T. Sawitowski, â€œCurrent and future applications of nanoclustersâ€,

Chem. Soc. Rev., vol. 28, no. 3, pp. 179-185, 1999.

F. Baletto and R. Ferrando, â€œStructural properties of nanoclusters:

Energetic, thermodynamic and kinetic effectsâ€, Rev. Mod. Phys.,

vol. 77, no. 1, pp. 371-426, 2005.

J. P. Wilcoxon and B.L. Abrams, â€œCritical review synthesis,

structure and properties of metal nanoclustersâ€, Chem. Soc. Rev.,

vol. 35, no. 11, pp. 1162-1194, 2006.

C.R.A. Catlow, S.T. Bromley, S. Hamad, M.M. Fonz, A.A. Sokol

and S.M. Woodley, â€œModeling nanoclusters and nucleationâ€, Phys.

Chem. Chem. Phys., vol. 12, no. 4, pp. 786-811, 2010.

R. Ferrando, A. Fortunelli and R.L. Johnston, â€œSearching for the

optimum structures of alloy nanoclustersâ€, Phys. Chem. Chem.

Phys., vol. 10, no. 5, pp. 640-649, 2008.

T. Pawluk, Y. Hirata and L. Wang, â€œStudies of iridium

nanoparticles using density functional theory calculationsâ€,

J. Phys. Chem. B, vol. 109, no. 44, pp. 20817-20823, 2005.

S. Nunez and R.L. Johnston, â€œStructures and chemical ordering of

small Cuâˆ’Ag clustersâ€, J. Phys. Chem. C, vol. 114, no. 31,

pp. 13255-13266, 2010.

H. Hakkinen, â€œAtomic and electronic structure of gold clusters:

understanding flakes, cages and superatoms from simple

conceptsâ€, Chem. Soc. Rev., vol. 37, no. 9, pp. 1847-1859, 2008.

R. Fournier, â€œTheoretical study of the structure of silver clustersâ€,

J. Chem. Phys., vol. 115, no. 5, pp. 2165-2177, 2001.

Z.H. Li, A.W. Jasper and D.G. Truhlar, â€œStructures, rugged

energetic landscapes, and nano thermodynamics of Al n (2â‰¤ nâ‰¤ 65)

particlesâ€, J. Am. Chem. Soc., vol. 129, no. 48, pp. 14899-14910,

S. Mukhopadhyay, S. Gowtham, R. Pandey and A. Costales,

â€œTheoretical study of small clusters of indium oxide: InOâ€, J. Mol.

Struc: THEOCHEM, vol. 948, no. 1, pp. 31-35, 2010.

A Walsh, S.M. Woodley, â€œEvolutionary structure prediction and

electronic properties of indium oxide nanoclustersâ€, Phys. Chem.

Chem. Phys., vol. 12, no. 30, pp. 8446-8453, 2010.

M.A.Taglientea, L. Tapfer, M.V. Antisari, G. Mattei, P. Mazzoldi,

â€œSynthesis and stability of indium nanoclusters formed in silica by

ion implantationâ€, J. Non-Cryst Solids, vol. 346, no. 10, pp. 663-

, 2004.

F.F Shi, M. Bulkowski and K.C. Hsieh, â€œSynthesis of indium

nanoclusters and formation of thin film contacts on plastic

substrates for organic and flexible electronics applicationsâ€,

Nanotechnology, vol. 18, no. 26, pp. 265301- 265302, 2007.

O. Stenzel, A. Stendal, M. Roder, C. Borczyskowski, â€œTuning of

the plasmon absorption frequency of silver and indium

nanoclusters via thin amorphous silicon filmsâ€, Pure Appl. Opt.,

vol. 6, no. 5, pp. 577-588, 1997.

X.J. Liang, J.L. Li, X. Liu, J.Z. Wang, H. Liu, Q.K. Xue, J.F. Jia,

â€œSpontaneous assembly of ordered nanoclusters and nanowiresâ€,

Surf. Interface Anal., vol. 36, no. 2, pp. 100-103, 2004.

P.S. Raman, K.G. Nair, R. Kesavamoorthy, B.K. Panigrahi,

S. Dhara and V. Ravichandran, â€œFormation and growth of

embedded indium nanoclusters by In2+ implantation in silicaâ€,

Appl. Phys. A, vol. 87, no. 4, pp. 709-713, 2007.

N.H. Heo, J.S. Park, Y.J. Kim, W.T. Lim, S.W. Jung and K. Seff,

â€œSpatially ordered quantum dot array of indium nanoclusters in

fully indium exchanged zeolite Xâ€, J. Phys. Chem. B, vol.107,

no. 5, pp. 1120-1128, 2003.

Y. Zhang, G. Li and L. Zhang, â€œSynthesis of indium hollow

spheres and nano-tubes by a simple template free solvothermal

processâ€, Inorg. Chem. Commun., vol. 7, no. 3, pp. 344-346, 2004.

S. Kar, S. Santra and S. Chaudhuri, â€œDirect synthesis of indium

nano-tubes from indium metal sourceâ€, Cryst. Growth Des., vol. 8,

no. 1, pp. 344-346, 2008.

S. Roy and M. Springborg, â€œStructural and electronic properties of

indium phosphide nano-tubesâ€, J. Phys. Chem. C, vol. 113, no. 1,

pp. 81-86, 2009.

Z. Qian, S. Hou, J. Zhang, R. Li, Z. Shen, X. Zhao and Z. Xue,

â€œStability and electronic structure of single walled In nano-tubesâ€,

Physica E, vol. 30, no. 1-2, pp. 81-85, 2005.

P. Jena, â€œMaterials for Hydrogen Storage: Past, Present and

Futureâ€, J. Phys. Chem. Lett. vol. 2, pp. 206-211, 2011.

G. Kresse and J. Hafner, â€œAb initio molecular dynamics for liquid

metalsâ€, Phys. Rev. B, vol. 47, no. 1, pp. 558-561, 1993.

J.P. Perdew and Y. Wang, â€œAccurate and simple analytic

representation of the electron gas correlation energyâ€, Phys. Rev.

B, vol. 45, no. 23, pp. 13244-13249, 1992.

P. E. Blochl, â€œProjector augmented wave methodâ€, Phys. Rev. B,

vol. 50, no. 24, pp. 17953-17979, 1994.

G. Kresse and D. Joubert, â€œFrom ultra soft pseudo potentials to the

projector augmented wave methodâ€, Phys. Rev. B, vol. 59, no. 3,

pp. 1758-1775, 1999.

H.J. Monkhorst and J.D. Pack, â€œSpecial points for Brillouin zone

integrationsâ€, Phys. Rev. B, vol. 13, no. 12, pp. 5188-5192, 1976.

M. Methfessel and A.T. Paxton, â€œHigh precision sampling for

Brillouin zone integration in metalsâ€, Phys. Rev. B, vol. 40, no. 6,

pp. 3616-3621, 1989.

P. Pulay, â€œConvergence acceleration of iterative sequences: The

case of scf iterationâ€, Chem. Phys. Lett., vol. 73, no. 2, pp. 393-

, 1980.

J. D. Head, â€œComputation of vibrational frequencies for adsorbates

on surfacesâ€, Int. J. Quantum Chem., vol. 65, no. 5, pp. 827-838,

T. BjÃ¶rkman, A. Gulans, A. V. Krasheninnikov and R M

Nieminen, â€œAre we van der Waals ready?â€, J. Phys. Condens.

Matter, vol. 24, pp. 424218-424240, 2012.

R.F.W. Bader, â€œAtoms in Molecules: A Quantum Theoryâ€, Oxford

University Press, Oxford, 1990.

## Downloads

## Published

## How to Cite

*The Nucleus*, vol. 52, no. 4, pp. 185–191, Dec. 2015.