SYNTHESIS OF TRANSITION METAL OXIDE NANOCRYSTALS BY COST EFFECTIVE HYDROTHERMAL PROCESS

S. K. Durrani, Y. Khan, M. R. Khan, M. A. Haq

Abstract


Simple and cost effective hydrothermal process was used for synthesis of nanocrystals of transition metal oxides such as manganese oxide (α-MnO2), nickel oxide (NiO) and zinc oxide (ZnO). These nanocrystals were synthesized through hydrothermal decomposition under autogenous pressure condition using metal nitrates and ammonium hydroxide salts in aqueous solutions. The percent yield of synthesized selective oxide products was very good at pH values (> 3.2-3.5 for α-MnO2 and 9-9.6 for NiO and ZnO) irrespective of the solvent composition. The synthesized products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmet-Teller analysis (BET). The XRD results indicated that the synthesized MnO2, NiO and ZnO had body centered tetragonal, cubic and wurtzite structures having crystalline size 68±0.74, 33±0.14 and 54±0.38 nm respectively. However, the average crystalline sizes derived from BET method were found higher than XRD values indicated the agglomeration of nanocrystals. SEM analysis revealed the thickness of MnO2 nanowires and NiO nanobelts were in range of 50-90nm and 20-40nm respectively whereas the diameter of ZnO nanorods was about 80- 200nm and lengths of over 8-12μm.

Full Text:

PDF

References


P. Yang (Eds.), The Chemistry of nanostructured Materials, World Scientific

Publishing Co. Inc., Singapore, (2003).

A. S. Edelstein and R. S. Cammarata, Nanomaterials: Synthesis, Properties, and

Applications (Eds. Bristol, UK; Philadelphia,

PA), Institute of Physics (1996).

J. L. G. Fierro and L. L. G. Fierro, Metal

Oxides: Chemistry and Applications, CRC

Press, Taylor & Francis, Boca Raton (2005).

G. Eranna, B. C. Joshi, D. P. Runthala and

R. P. Gupta, Crit. Rev. Solid State Mater. Sci.

(2004) 111.

T. R. Jow and J. P. Zheng, J. Electrochem.

Soc. 145 (1998) 49.

K. W. Nam and K. B. Kim, J. Electrochem.

Soc. 149 (2002) A346.

S. C. Pang and M.A. Anderson, J.

Electrochem. Soc.147 (2000) m444.

M. S. Wu and H. H. Hsieh, Electrochimica

Acta 53 (2008) 3427.

C. M. Lieber, Solid State Common 107

(1998) 607.

J. J. Wu, S.C. Liu, Adv. Mater. 15 (2003)

D. W. Johnson, Jr., in Advances in Ceramics:

Ceramic Powder Science; Vol. 21, pp. 3-19.

American Ceramic Society (1987).

L. P. Zhou, J. Xu, X.Q. Li and F. Wang,

Mater. Chem. Phys. 97 (2006) 137.

L. V. Hampden and M.J. Smith, Chemistry of

Advanced Materials: An Overview; Wiley

VCH: New York (1998).

C. H. Lu and H. C. Wang, J. Eur. Ceram.

Soc. 24 (2004) 717.

P. He, X. Shen and H. Gao, J. Colloid

Interface Sci. 284 (2005) 510.

J. Kilier, C. J.Tucker, T.H. Kalantar and D. P.

Green, Adv. Mater. 12 (2000) 1751.

G. C. Ulmer and H. L. Barmes (eds.)

Hydrothermal Experimental Techniques,

John Wiley & Sons, New York (1981).

S. K. Durrani, A. H. Qureshi, M.A. Hussain,

M. Ahmad, N. Ahmed and N.K. Qazi, The

Nucleus 46 (2009) 27.

S.K. Durrani, J. Akhtar, N.A. Chughtai, M.

Ahmed and M.J. Moughal, J. Mat. Sci. Tech.,

(2005) 563.

S. Brunauer, P.H. Emmett and E. Teller, J.

Amer. Chem. Soc. 60 (1938) 309.

J. W. Visser, J. App. Crystallogr. 2 (1969) 89.

V. Subramanian, H. Zhu and B. Wei, J.

Power Source 159 (2006) 361.

X. Liu and S. Fu, Solid State Phenomena,

(2007) 1437.

U. Alver, T. Kilinc, E. Bacaksiz, T.

Kücükömeroğlu, S.Nezir, I.H.Mutlu, and F.

Aslan, Thin Solid Films, 515 (2007) 3448.

H. Klug and I. Alexander, X-ray Diffraction

Procedures for Polycrystalline and

Amorphous Materials, Wiley, New York

(1974) p. 618.

H. Kou, J. Wang, Y. Pan and J. Guo, Mat.

Chem. Phys. 99 (2006) 325.

P.J. M. Carrot and K.S.W. Sing, Chem. and

Ind. (1986).

H. M. Deng, J. Ding, Y. Shi, X. Y. Liu and J.

Wang, J. Mater. Sci. 36 (2001) 3273.

C.C. Chen, P. Liu and C. Lu, Chem. Eng.

Journal. 144 (2008) 509.


Refbacks

  • There are currently no refbacks.