SOL GEL PROCESS FOR THE PREPARATION OF SOLID ELECTROLYTE MATERIAL

Authors

  • S. K. Durrani Materials Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
  • J. Akhtar Materials Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
  • A. H. Qureshi Materials Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
  • N. K. Qazi Materials Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan

Abstract

The reality that fossil fuels are running out is driving the development of fuel cells. These fuel cells offer attractive and alternative energy sources because of high conversion efficiency, low pollution, light weight, and high power density. In this article, status of fuel cells and ceramic fuel cells have been discussed with particular emphasis on stabilized zirconia widely used as solid electrolyte material in solid oxide fuel cells (SOFCs) due to its high oxygen ion conductivity. The study is also focused on low cost process for synthesis of 12mol% yttria stabilized zirconia (12YSZ) powder from the zirconia sol prepared by hydrothermal treatment of zirconium nitrate solution with an aqueous electrolyte extraction by organic extractant. The 12YSZ powder found to be pure white crystalline. 12YSZ calcined powder were sintered at 1200ºC for 1-6 hours durations. Phase, purity, crystallinity and morphology of 12YSZ were examined by differential thermal analysis (DTA), thermogravimetry (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. SEM indicated the size range 0.2 - 5 micron. The results revealed that the product material (pellet) can be sintered into uniformly size fine grained ceramic of > 98% theoretical density around 1200oC for 6 hours as compared to the pellet sintered for 1 hour at the same temperature.

References

L. J. Blomen, and M. N. Mugerwa, (eds) Fuel Cell Systems. New York: Plenum Press, (1994).

S. C. Singhal and H. Iwahara (eds), Proceedings of the Third International Symposium on Solid Oxide Fuel Cells, Electrochemical Soc., Pennington, N.J. USA. (1993).

N. Q. Minh and T. Takahashi, (eds)., Science and Technology of Ceramic Fuel Cells., Elsevier Science, B.V., The Netherlands, (1995).

B.F. Sφrensen and N.Hasen, Editors, RISφ Materials Research Department, Annual Report 1997, Published by Risφ National Laboratory, April, 1998, pp.23.

K. Kordesch and G. Simader, (eds.) Fuel Cells and their Applications VCH Press NY USA, (1996).

U. Stimming, S. C. Singhal, H. Tagawa and W. Lehnert, (eds) Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells, The Electrochemical Soc. N.J USA. Vol 97-40, (1997).

S. C. Singhal and M. Dokiya, (eds.) Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells, Electrochem. Soc. NJ. USA. Vol 99-19, (1999).

A, J. Appleby and F.R. Foulkes, Fuel Cell Handbook, Van Norstand Reinhold, New York, NY,(1989).

K. Kasahara, M. Morioka, H. Yoshida and H. Shingai, J. Power Sources, 86 (2000) 298.

J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, Fuel Cells A Handbook Revision 3, US Department of Energy, (1994).

J. H. Hirschenhofer and H. John, Fuel Cell Status 1994, IEEE AES Systems Magazine, Nov. (1994) 10-15.

X. Ren, S.M. Wilson and S. Gottesfeld, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells, (eds)., S. Gottesfeld, G. Halpert and A. Landgrebe, Electrochem. Soc., (1995), PV95-23, 199.

J. Niikura, Solid Polymer Electrolyte Fuel Cell, US Patent 6660419, (2000).

H. Boysen, F. Frey and T. Vogt, Acta, Cryst., B47 (1991) 881.

F. Frey, H. Boysen and T. Vogt, Acta, Cryst., B46 (1990) 724.

J.M. Leger, P. E. Tomaszewski, A. Atouf and A.S. Pereira, Phys. Rev., B47 (1993) 14075

L.P.W. Chen and H.J.E. Penner, Phys. Rev., B48 (1993) 10063.

S.B. Bhaduri and F.H. Froes, J. Materials (1991) 16.

B.K. George and H.K. Bowen, Ceramic Bulletin, 65, No. 5 (1983) 590.

N.Q. Minh, in Science and Technology of Zirconia V, S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink( eds), Technomic Publishing Company, Lancaster, PA, 1993.

A.H. Heuer and L.W. Hobbs, Advances in Ceramics, Vol.3, Science and Technology of Zirconia, Am. Ceramic Soc., Columbus, Ohio, 1981.

H. Tagawa, J. Australian Ceramic Society, 32, No. 1-2 (1996) 31.

Ogumi, Zempachi, Ioroi, Tsutomu, Uchimoto, Yoshiharu and Takehara, Zenichiro, J.Amer. Ceram. Soc., 78, No. 3, (1995) 593.

K.S. Mazdiyasni, C.T. Lynch and J.S. Smith, J. Amer. Ceram. Soc., 50, No. 10 (1967) 532.

C. Marcilly, P. Conty and B. Delmon, J. Amer. Ceram. Soc., 53, No. 1 (1970) 56.

H. Sarciman in Material Science Monographs, Ceramics Today Tomorrow’s Ceramics, ed. P. Vincenzini, Elsevier, Amsterdam, 66B (1991) 925.

M.A.C.G. Van De Graaf and A. J. Burggraaf, in Advances in Ceramics, Science and Technology of Zirconia II, 12 (1984), Edited by A.H. Heuer and L.W. Hobbs, American Ceramic Society, Columbus, OH,.

C.E. Vigno lo, Eur. Coat. J., Part 5 (1995) 359.

H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater. 7 (1995) 663.

S.P.S. Badwal and J. Drennan, Solid State Ionics, 53-56 (1992)769.

T. Ishii, Iwata, Y. Tajima and A. Yamaji, Solid State Ionics, 57 (1992) 153.

J. Akhtar, S.M.H. Zaidi and N.A. Chughtai, The Nucleus, 26, Nos. 3, 4 (1989) 19.

T. Inprasit, P. Limthongkul, K. Somroop, S. Charojrochkul and S Wongkasemjit, The Fifth China Int. Conf. on â€High Performance Ceramicsâ€, May 10-13, (2007) p.37.

E. Han, Erolu, L. Türker; Int. J. of Hydrogen Energy, 25, No. 2 (2000) 157.

D. G. Lamas, J. Magnetism and Magnetic Material, 241 (2002) 207.

X. Zhiliang, Materials Research Bulletin, 40 (2005) 1617.

Downloads

Published

03-07-2020

How to Cite

[1]
S. K. Durrani, J. Akhtar, A. H. Qureshi, and N. K. Qazi, “SOL GEL PROCESS FOR THE PREPARATION OF SOLID ELECTROLYTE MATERIAL”, The Nucleus, vol. 44, no. 3-4, pp. 97–104, Jul. 2020.

Issue

Section

Articles